首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly differentiated, heteromorphic ZZ female symbol /ZW male symbol sex chromosomes were found in the karyotypes of the neotropical leptodactylid frogs Eleutherodactylus euphronides and E. shrevei. The W chromosomes are the largest heterochromatic, female-specific chromosomes so far discovered in the class Amphibia. The analyses of the banding patterns with AT- and GC base-pair specific fluorochromes show that the constitutive heterochromatin in the giant W chromosomes consists of various categories of repetitive DNA sequences. The W chromosomes of both species are similar in size, morphology and banding patterns, whereas their Z chromosomes exhibit conspicuous differences. In the cell nuclei of female animals, the W chromosomes form very prominent chromatin bodies (W chromatin). DNA flow cytometric measurements demonstrate clear differences in the DNA content of male and female erythrocytes caused by the giant W chromosome, and also shows that these Eleutherodactylus genomes are among the smallest of all amphibian genomes. The importance of the heteromorphic ZW sex chromosomes for the study of Z-linked genes, the similarities and differences of the two karyotypes, and the significance of the exceptionally small genomes are discussed.  相似文献   

2.
T. Haaf  M. Schmid 《Chromosoma》1984,89(1):37-41
The mitotic and meiotic chromosomes of the American cyprinodont fish Poecilia sphenops var. melanistica were analysed. All 46 chromosomes are telocentric. By specific staining of the constitutive heterochromatin with C-banding and various AT-specific fluorochromes, the homomorphic chromosome pair 1 could be identified as sex chromosomes of the ZW/ZZ type. All female animals exhibit a W chromosome with a large region of telomeric heterochromatin that is not present in the Z chromosome. These sex chromosomes cannot be distinguished by conventional staining; they represent the first demonstration of sex chromosomes in fishes in an early stage of morphological differentiation. The W heterochromatin and the telomeric heterochromatin in the two autosomes 18 show a very bright fluorescence when stained with AT-specific fluorochromes. This allows the direct identification of the chromosomal sex by examining the interphase nuclei: females exhibit three, males only two brightly fluorescent heterochromatic chromocenters in their nuclei. The significance of these ZW/ ZZ sex chromosomes and their specific DNA sequences, the dose compensation of the Z-linked genes, and the experimental possibilities using sex-reversed ZW males are discussed.  相似文献   

3.
4.
5.
6.
7.
Buergeria buergeri is female heterozygous in sex determination; chromosome pair No. 7 in this species is a pair of sex chromosomes of the ZZ/ZW type. Genetic analysis of AAT-1 variants was carried out to elucidate the mode of inheritance of this locus by starch-gel electrophoresis using field-caught females and males and their offspring produced by artificial crossings. The results showed that the AAT-1 locus is sex-linked and that alleles are expressed on the Z chromosome, but not the W chromosome. It is evident that the AAT-1 gene of female offspring is hemizygous and that the allele present is on the Z chromosome, which is derived from the male parent.  相似文献   

8.
A bird zinc-finger protein closely related to ZFY   总被引:3,自引:0,他引:3  
The ZFY gene is thought to reside in the "sex-determining" region of the mammalian Y chromosome and encodes a zinc-finger protein that may function in determining the sex of embryos. Although birds have a ZZ(male)/ZW(female) sex-determination system, they possess a gene, Zfb, that is highly homologous to ZFY. We used ZFY as a hybridization probe to clone the zinc-finger domain of the chicken Zfb gene. Chicken Zfb is widely transcribed in male and female tissues and encodes a protein with a zinc-finger domain that is 93% identical in amino acid sequence to the zinc-finger domain of ZFY. Thus, the putative DNA-binding domains of the Zfb and ZFY proteins diverged little from a common ancestral protein that existed prior to birds and mammals, suggesting that the DNA binding site has been similarly conserved. The absence of sex differences in the hybridization patterns of Zfb raises the question of whether this gene is present on the Z/W sex chromosomes in birds.  相似文献   

9.
Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AAT)n microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGG)n motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.  相似文献   

10.
Chromosome banding and DNA replication patterns in bird karyotypes   总被引:3,自引:0,他引:3  
The karyotypes of the domestic chicken (Gallus domesticus), Japanese quail (Coturnix coturnix), and griffon vulture (Gyps fulvus) were studied with a variety of banding techniques. The DNA replication patterns of bird chromosomes, analyzed by incorporation of 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT), are presented here for the first time. In particular, the time sequence of replication of the ZZ/ZW sex chromosomes throughout the S-phase was meticulously analyzed. BrdU and dT incorporation are very useful methods to identify homoeologies between karyotypes, as well as rearrangements that occurred in the macroautosomes during speciation. The Z chromosomes of the three birds displayed the same replication patterns, indicating a high degree of evolutionary conservation. In the homogametic male, BrdU and dT incorporation revealed no evidence of asynchronous replication between euchromatic bands in the ZZ pair. The same was true of the three Z chromosomes in a triploid-diploid chimeric chicken embryo. Minor replication asynchronies between the homologous ZZ or ZZZ chromosomes were restricted to heterochromatic C-bands. These results confirm that, in the ZZ male/ZW female sex-determining system of birds, dosage compensation for Z-linked genes does not occur by inactivation of one of the two Z chromosomes in the homogametic male. The heterochromatic W chromosomes of the three species showed bright labeling with distamycin A/mithramycin counterstain-enhanced fluorescence and exhibited significantly delayed DNA replication. The nucleolus organizers of birds, frequently located in microchromosomes, were also distinguished by bright distamycin A/mithramycin fluorescence.  相似文献   

11.
A wide range of sex chromosome mechanisms, including simple and multiple chromosome systems is characteristic of fishes. The Leporinus genus represent a good model to study sex chromosome mechanisms, because an unambiguous ZZ/ZW sex chromosome system was previously described for seven species, while the remaining studied species of the genus do not show differentiated sex chromosomes. The occurrence of sex chromosomes in Leporinus trifasciatus and Leporinus sp2 from the Araguaia river, Amazon basin, Brazil, was here investigated. ZZ/ZW sex chromosomes were detected for both species. The Z and W chromosome morphology of L. trifasciatus is the same as described for other species of the genus Leporinus. However, the Z and W chromosomes of L. sp2 were quite different in their morphology and banding pattern suggesting that the ZW system of this species have originated independently from the ZW system previously described for other Leporinus.  相似文献   

12.
白豆杉的核型和性染色体的研究   总被引:6,自引:0,他引:6  
管启良  俞仲辂 《遗传学报》1993,20(2):155-158
白豆杉pseudotaxus chienii(Cheng)Cheng是我国裸子植物特有属之一,雌雄异常,根尖 细胞染色体分析表明:雌株有一对异形性染色体,异配性别,属ZW型;雄株是同配性别,属ZZ型,雌株的型为2n=2x=24=22m(2SAT ZW) 2T,雄株的核型为2n=2x=24=22m(2SAT ZZ) 2T。Giemsa C-带,显示,Z染色体长短臂均具端带,W染色体不显带。  相似文献   

13.
In order to study the divergence of teleost sex chromosomes, subtractive cloning was carried out between genomic DNA of males and females of the rainbow trout (XX/XY) and of Leporinus elongatus (ZW/ZZ). Inserts cloned in a plasmid vector were individually tested on Southern blots of DNA of males and females for sex specificity. No sex-specific insert was obtained from trout, but two out of ten inserts cloned from L. elongatus showed sex-specific patterns in this species: one corresponds to a sequence present on both Z and W chromosomes, while the other is W specific. Sequences of these two inserts show neither clear homology with other known sequences, nor an open reading frame. They cross-hybridize with the genomic DNA of Leporinus friderici, but without sex-specific patterns. Twenty-four L. elongatus adults were sexed by gonadal observation, chromosomed examination and Southern hybridization with one or the other insert. Ten males and 11 females had chromosomes and hybridization patterns typical of their sex. One ZW female was recognized as a male with the W-specific probe. This was also the case for two unusual ZW males, one having a male hybridization pattern with the other probe. These three atypical individuals may result from single genetic exchanges between four regions of the Z and the W, giving rise to three atypical W chromosomes. Finding males with such atypical heterochromosomes in a female heterogametic species may indicate that a gradual transition occurs between the heterogametic systems.  相似文献   

14.
Birds show female heterogamety, with ZZ males and ZW females. It is still not clear whether the W is female-determining, or whether two doses of the Z chromosomes are male-determining, or both. This question could easily be settled by the sexual phenotypes of ZZW and ZO birds, in the same way that the sexual phenotypes of XXY and XO showed that the Y is male determining in humans, but that the dosage of an X-borne gene determines sex in Drosophila. However, despite extensive searches, no ZZW or ZO diploid birds have been satisfactorily documented, so we must assume that these genotypes are embryonic lethals. Given that ZW and ZZ are viable and the W contains few genes it is not clear why this should be so. Here I propose that sex chromosome aneuploids are lethal in chicken because, to achieve dosage compensation, a locus on the W chromosome controls the upregulation of genes on the Z in ZW females. ZO birds would therefore have only half the normal dose of Z-linked gene product and ZZW would have twice the amount, both of which would undoubtedly be incompatible with life. Reports of other aneuploids and triploids are also consistent with this hypothesis.  相似文献   

15.
16.
大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据   总被引:13,自引:1,他引:12  
大鳞副泥鳅是鲤形目、鳅科的鱼类。其2n数为48,核型组成为12m+4sm+32 t(雄性),11m+5sm+32t(雌性)。根据银染带和C带特征分析,证实大鳞副泥鳅为ZZ/ZW型性别决定。Z染色体为中部着丝粒染色体,在其长臂端部有Ag -NOR存在。 W染色体为亚中部着丝粒染色体,在其长臂末端也有Ag-NOR存在,同时还有一深染的居间C带,这是W染色体独有的带纹特征。 Abstract:Paramisgurnus dabryanus belongs to Cypriniformes,Cobitidae.Its 2n is 48.The karyotype formula is 12m+4sm+32t(in male),11m+5sm+32t(in female).According to the Ag-NORs band and C-band patterns,we consider that its sex determination is of ZZ/ZW type.The Z chromosome is a metacentric one with Ag-NORs located on its arm end.The W chromosome is a submetacentric with Ag-NORs located on the terminal of its long arm.There is a darkly stained C-band on the long arm of W chromosome.This band is a characteric of the W chromosome.  相似文献   

17.
Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature-dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species. The orders were also almost the same as those of the ostrich (Struthio camelus) Z chromosome, which retains the primitive state of the avian ancestral Z chromosome. These results strongly suggest that the X and Y chromosomes of Staurotypus turtles are at a very early stage of sex chromosome differentiation, and that these chromosomes and the avian ZW chromosomes share the same origin. Nonetheless, the turtles and birds acquired different systems of heterogametic sex determination during their evolution.  相似文献   

18.
Sex chromosomes of the Japanese frog Rana rugosa are heteromorphic in the male (XX/XY) or in the female (ZZ/ZW) in two geographic forms, whereas they are still homomorphic in both sexes in two other forms (Hiroshima and Isehara types). To make clear the origin and differentiation mechanisms of the heteromorphic sex chromosomes, we isolated a sex-linked gene, ADP/ATP translocase, and constructed a phylogenetic tree of the genes derived from the sex chromosomes. The tree shows that the Hiroshima gene diverges first, and the rest form two clusters: one includes the Y and Z genes and the other includes the X, W, and Isehara genes. The Hiroshima gene shares more sequence similarity with the Y and Z genes than with the X, W, and Isehara genes. This suggests that the Y and Z sex chromosomes originate from the Hiroshima type, whereas the X and W chromosomes originate from the Isehara-type sex chromosome. Thus, we infer that hybridization between two ancestral forms, with the Hiroshima-type sex chromosome in one and the Isehara-type sex chromosome in the other, was the primary event causing differentiation of the heteromorphic sex chromosomes.   相似文献   

19.
R Zimmer  A Haberfeld  A M Gibbins 《Génome》1997,40(6):865-872
A simple method was used to adapt a standard light microscope for the collection of chicken Z chromosomes from mitotic-metaphase spreads. The DNA of the collected chromosomes was enzymatically amplified using a partially degenerate primer. The resulting sequences, within a size range of 200-800 bp, were cloned to produce a Z chromosome DNA library, using blunt-end ligation into a SmaI-digested pUC18 plasmid (the SureClone system; Pharmacia, U.S.A.). The microcloning experiments produced 1250 clones; the size range of the cloned inserts was 250-800 bp, with an average of 480 bp (176 clones examined). Using male chicken genomic DNA as a probe, 10 out of 17 randomly selected clones showed strong positive signals on Southern blots, confirming the origin of the inserts as chicken DNA. In addition, the Z-chromosome origin of a selected microclone was verified in a semiquantitative Southern blot hybridization that showed positive signals with intensities that were approximately twice as strong for male (ZZ) as for female (ZW) chicken genomic DNA when the clone was used as a probe. The value of these libraries in further analysis of the chicken Z chromosome is discussed.  相似文献   

20.
The sex chromosomes of the silkworm, Bombyx mori, are designated ZW for the female and ZZ for the male. We previously characterized a female-specific randomly amplified polymorphic DNA (RAPD) marker, designated Female-218, from the translocation-bearing W chromosomes. These W chromosomes contain a region of the second chromosome, which carries visible larval markers of the p loci. We used strain TWPB in which female larvae have black skin due to the p(B) gene (T(W;2)p(B), +p/+p) while male larvae have whitish skin (+p/+p). To determine whether the Female-218 RAPD marker is derived from the "W region" or a "second chromosome fragment", we induced a detachment of the translocated W chromosome, T(W;2)p(B), by treating the eggs with hot water at an early developmental stage. After hot water treatment, we obtained 27 white female larvae out of 4850 female larvae. The Female-218 RAPD marker was not amplified in 26 out of 27 white female larvae, and was amplified from one white female larva. Moreover, we obtained 11 black male larvae out of 5377 male larvae. Eight out of 11 black male larvae became adult moths, and the Female-218 RAPD marker was amplified from all eight male moths. Examination of the genetic relationship between the Female-218 RAPD marker and the second chromosome fragment of the translocated W chromosome strongly indicates that the Female-218 RAPD marker is amplified from the region of second chromosome fragment of the T(W;2)p(B) chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号