首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响   总被引:31,自引:4,他引:27  
在NaCl胁迫下无论接种AM真菌与否玉米植株生物产量均减少,但不接种处理的减少幅度比较种处理的高10个百分点左右,盐胁迫下接种AM真菌的玉米根系和地上部的干重、叶片水热均高于不接种处理、叶片脯氨酸含量低于不接种处理,在盐胁迫下真菌菌丝对玉米植株营养的贡献由45.3%降为42.6%,AM真菌对植株生长的效应反而由30.9%提高到63.5%,说明AM真菌主米耐盐性的机理与改善植株的水分状况和P营养状况  相似文献   

2.
盐度和CO2倍增环境下碱蓬幼苗呼吸酶活性的变化   总被引:3,自引:0,他引:3  
研究了生长在正常大气CO2和CO2倍增环境中的盐生植物碱蓬(Suaedasalsa)幼苗呼吸酶活性对KCl和NaCl的反应.结果表明,在CO2倍增(700μl·L-1)和正常大气CO2(350μl·L-1)下,300mmol·L-1KCl和NaCl均能抑制琥珀酸脱氢酶(SDH)和苹果酸脱氢酶(MDH)活性,而异柠檬酸脱氢酶(IDH)活性为NaCl抑制、KCl促进;NaCl和KCl明显抑制细胞色素氧化酶(CO)和光呼吸中乙醇酸氧化酶(GO)、羟基丙酮酸还原酶(HPR)活性;并指出在KCl胁迫下,CO2使三羧酸循环(TCAC)的运行变慢,NaCl胁迫下使其加快,TCAC运行限速步骤与MDH无关,CO为盐对呼吸代谢影响的重要位点.另外,K+、Na+对蛋白表达的影响有差异,CO2可使盐胁迫下的碱蓬幼苗蛋白表达降低.  相似文献   

3.
不同浓度四氯化碳(CCl4)对草鱼肝原代细胞的损伤实验中,CCl4浓度为10μl/ml可引起细胞血清中丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、乳酸脱氢酶(LDH)逸出量与细胞破损率显著增高,培养液中添加亚硒酸钠(Na2SeO3)0.2μg/ml,则可降低ALT、AST、LDH的逸出量,减轻细胞破损程度。Na2SeO3保护实验中,Na2SeO2+CCl4组预先腹腔注射(ip)0.1mg/kg.bw连续三日,末次ipCCl4混合液1ml/kg.bw,24h内肝组织超氧物歧化酶(SOD)相对活性比CCl4组提高达91.5%,第七日仍提高达54.5%,与对照组的水平基本接近;血清中丙氨酸氨基转氨酶(ALT)水平逐渐降低。本实验还观察到Na2SeO3可引起肝脂质过氧化物显著降低,肝微粒体蛋白含量与细胞色素P—450活性升高;组织切片观察显示肝组织损伤程度减轻,72h后细胞核增多。表明Na2SeO3可提高草鱼肝清除自由基能力,增强肝脏解毒功能。  相似文献   

4.
红豆草耐盐愈伤组织的筛选及植株再生   总被引:13,自引:3,他引:10  
将红豆草种子在含1.2%NaCl的MS培养基上萌发以消除盐敏感的幼苗,把存活的幼苗下胚轴切段在含1mg/L2,4-D、0.5mg/L6-BA及1.2%NaCl的MS培养基上诱导愈伤组织,通过连续筛选得到可耐受1.8%NaCl的愈伤组织,在有0.2mg/L NAA和1mg/L IAA存在下该愈伤组织分化出芽,待幼,待幼苗长至3cm左右时转至含2mg/LNAA和或IBA的1/2MS培养基上生根。对对照  相似文献   

5.
NaCl胁迫对螺旋藻生长及抗氧化酶活性的影响   总被引:21,自引:0,他引:21  
在01%~5.0%NaCl浓度范围的培养基中培养极大螺旋藻(Spirulinamaxima),发现NaCl浓度高于2.0%时螺旋藻生长受到明显抑制。培养7天后测定超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(ASAPOD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量。结果表明:在盐胁迫下,SOD酶活性升高;抗坏血酸过氧化物酶和过氧化氢酶活性在低盐胁迫下活性升高,高盐胁迫下抗坏血酸过氧化物酶活性迅速降低,过氧化物酶则完全失活;MDA含量先随盐胁迫程度增加而降低,后随盐胁迫的进一步增强恢复至对照水平。  相似文献   

6.
不同种子预处理方法对提高三树种幼苗耐盐性的效应   总被引:10,自引:0,他引:10  
刺槐(RobiniapseudoacaciaLinn.)、湿地松(PinuseliotiEngelm.)和侧柏〔Platycladusorientalis(L.)Franco〕种子经03%CaCl2,250μg/gH3BO3和250μg/g多效唑(MET)浸种24h,然后测定幼苗的耐盐性。结果表明,在0.3%NaCl胁迫条件下,不同种子预处理方法对种子发芽率、平均苗高、根茎比、简易活力指数(SVIS)以及幼苗中Na+与K+的累积量、Na+/K+比及游离脯氨酸含量有较大影响。树种不同,处理效果也存在明显差异。湿地松以0.3%CaCl2,侧柏以250μg/gH3BO3浸种处理效果最好,显著提高种子发芽率、平均苗高、根茎比和SVIS,降低幼苗Na+吸收量和Na+/K+比,缓解盐胁迫逆境。3种种子预处理方法均降低刺槐种子发芽率、平均苗长和SVIS,但提高刺槐幼苗游离脯氨酸含量和幼苗根茎比,减少幼苗对Na+的吸收,降低Na+/K+比  相似文献   

7.
NaCl胁迫番茄苗的生长和营养元素积累(简报)   总被引:3,自引:0,他引:3  
在NaCl胁迫下番茄植株生长速率和营养元素积累均下降,但两品种的花冠比没有改变。不同品种番茄植株的生长和根冠部元素的积累对NaCl胁迫的响应在异。100mol·L^-1NaCl处理下,K^+积累与植株生长速率呈显著正相关,Ca^2+、Mg^2+的积累与生长速率相关性不显著。  相似文献   

8.
CO2倍增环境生长的小麦幼苗对盐胁迫的生理反应   总被引:10,自引:0,他引:10  
研究了CO2倍增/盐胁迫对不同抗盐性冬小麦幼苗有机干重,K^+,Na^+,Ca^++,Mg^++含量,脯氨酸水平及蛋白质变化的效应,表明两种小麦生长在150mmol/LNaCl下,其有机干重,K^+,Ca^++,Mg^++含量下降,而Na^+明显长高;CO2倍增可增加小麦有机干重,使一价阳离子K^+,Na^+含量升高,二价阳离子Ca^++,Mg^++呈下降趋势,同时有利于游离脯氨酸的积累,并为植物  相似文献   

9.
钙在无花果细胞盐诱导脯氨酸积累中的作用   总被引:3,自引:0,他引:3  
接种于含NaCl 培养基的无花果愈伤组织细胞生长极显著受抑,Na+ 含量增加,K/Na 比值下降,游离脯氨酸积累。培养基中添加一定量CaCl2 不仅在一定程度上缓解盐分对生长的抑制作用,增加K+/Na + 比,而且明显促进游离脯氨酸积累。如果在添加钙的同时再添加细胞钙调素活性抑制剂盐酸氯丙嗪(CPZ) 或盐酸三氟拉嗪(TFP) ,均使钙促进的脯氨酸积累受到明显抑制,表明盐胁迫诱导的脯氨酸积累可能涉及细胞CaCaM系统。  相似文献   

10.
孔令韶  马茂华 《生态学报》1995,15(4):351-358
盐节木株丛矮小,高约20-40cm;5月底至8月底净生长高度约3cm。侧根发达,主要分布在土壤由表层往下水分含量急增、多数情况下盐分逐步降低的20-40cm的土层内,几乎与地表平行伸展,有的长达3m以上。盐节木群落为多汁盐柴类半灌木荒漠中的一个群系。本区记载有8个群丛,分布在地下水位1.0-1.7m、表土层含盐量为4%-8%的盐土上。种类组成贫乏,群落结构简单,总覆盖度30%-50%,生物量1000-2000kg/hm ̄2。群落中盐节木、有叶盐爪爪(Kalidiumfoliatum)具有很高的Na、S含量,分别在50000mg/kg、10000mg/kg以上;Na/K、Na/Ca、S/P比值为8.5-26.0,其它植物为1左右;植物中的Ca/Mg比值为1.0-1.6。盐节木6种元素含量的季节变化,Na呈增高趋势;其变化曲线与Ca、Mg相反;Na、S曲线相似。盐节木水提取液中具有高的Cl ̄-、含量,pH为6.66-6.84。盐节木群落广泛分布在绿洲外缘的盐碱地上。在盐碱地改良、防止风沙、保护绿洲、牲畜冬春放牧等方面,具有重要的生态经济意义。  相似文献   

11.
Growth of corn in saline waters   总被引:1,自引:0,他引:1  
Eight cultivars of Zea mays plus the wild species Zea diploperennis were screened for seedling saline tolerance up to 3.2% NaCl. The best performances were given by the cultivars Mo 17 and commercial Hawaiian Super Sweet Hybrid. These two were then field grown on coral-cinder beds using drip irrigation with fresh of half-strength sea water (1.5–1.7% dissolved solids). Growth and chemical data for Mo 17 at 12 weeks show reduced growth but the same percentage dry matter. Ash, protein and total sulfur were higher in saline plants, silica and total phosphorus lower. Na, K. Mg, and Cl were elevated and Ca reduced slightly. Fe was also increased in saline plants. Both Mo 17 and Super Sweet Hybrid corn flowered and produced seed which retained essentially normal viability both in fresh and salt water.  相似文献   

12.
Summary The response of lettuce (Lactuca sativa L.) to residual soil salinity as influenced by the ionic composition of two different saline waters (ECw=3.1 dS/m, referenced at 25°C) and rain water, was investigated in a greenhouse experiment with three successive plantings of lettuce in the same soil. One of the saline waters was saturated with gypsum (SO4=35 mol (−)m−3) and the other contained SO4 at 15 mol (−)m−3 and Na and Cl at 18 and 14 mol (±)m−3, respectively (mixed water). All waters were applied with a 0.3 leaching fraction. Soil water salinity and sodium adsorption ratio (SAR) increased in both cases using saline waters. The effect of mixed saline water was higher and became more marked after each planting, resulting from higher contribution of Na and Cl to soil salinity. With both saline waters, soil solution became saturated with gypsum. At first planting, gypsum saturated and mixed waters produced fresh yield increases of 15 and 24%, respectively, relative to rain water. At second planting, however, there was reduction in yield of 11 and 22%, respectively, relative to rain water; at third planting yield reduced by 22 and 76% with gypsum saturated and mixed water, respectively.  相似文献   

13.
Donnelly F. A., Appleton C. C. and Schutte C. H. J. 1984. The influence of salinity on the cercariae of three species of Schistosoma. International Journal for Parasitology14: 13–21. The effect of salinity on the longevity and infectivity of cercariae of Schistosoma mattheei, Schistosoma haematobium and Schistosoma mansoni was determined. No significant differences in cercarial longevity occurred (p > 0.05) in low salinities (0–5.25%), whereas further increases in salinity resulted in progressive decreases in survival. In salinities ? 17.5%, cercariae were incapable of surviving for longer than 11 min. A maximum life-span of up to 122 h was recorded for some S. mattheei cercariae. Cercarial infectivity, as indicated by worm returns, was reduced progressively with increasing salinity up to a lethal limit of 10.5%. Differences in the salinity tolerance of the cercariae of the three species were discussed.  相似文献   

14.
Vegetation indicators of salinity in northern Queensland   总被引:1,自引:0,他引:1  
Abstract The possibility that plants could serve as indicators of underlying soil salinity in northern Queensland, Australia, was investigated using 2197 site observations recorded during a land resources inventory of the Dalrymple Shire. The area surveyed intersects three biogeographical regions: the desert uplands, the Einasleigh uplands and the northern brigalow belt. The three dominant plant species in the lower, middle, and upper vegetation strata were recorded, along with laboratory measurements of electrical conductivity down each soil profile. Correspondence analysis, generalized additive models and clustering were used to investigate the relationship between plant occurrence, climatic and edaphic factors. The results of these statistical analyses strongly suggest a relationship between salinity and brigalow plant communities. A generalized additive model to predict soil salinity from environmental variables including vegetation data is presented.  相似文献   

15.
There has been much interest recently in central California for reusing drainage water to grow trees. A sand-culture study was conducted to investigate the accumulation of boron (B) and selenium (Se) in eight hybrid poplar (Populus) clones irrigated with synthetic agricultural effluent containing increasing levels of chloride salt, B, and Se. Electrical conductivity (EC) ranged from 1.5 to 15 dS m-1, B levels from 1 to 5 mg L-1, and Se levels from 100 to 500 μg L-1. Compared with all tree organs, the leaves accumulated the greatest concentrations of B and Se at the time of harvest. The results show that pooled leaf B concentrations were positively correlated with EC levels (r = 0.78, P < 0.001) and negatively correlated (r = -0.53, P < 0.001) with leaf dry matter for all clones at all tested B levels. Combined leaf and stem Se data show, respectively, a significant decrease (P < 0.05 level) in tissue accumulation of Se with increased salinity. Toxicity symptoms (e.g., burning leaf margins, shoot die back) occurred in most clones grown at 12 and 15 dS m-1 treatments leading to leaf abscission. Based on the data, clone 49177 (Populus trichocarpa × P. deltoidus) best tolerated the tested parameters among the clones and accumulated the greatest amount of B and Se. The moderate ability of the Populus species to remove and accumulate B and Se from saline effluent is most effective at salinity levels less than 7 dS m-1.  相似文献   

16.
采用盆栽试验,设置不同盐胁迫浓度,通过萌发至幼苗期的出苗速度、植株形态和生物量等指标对200个花生品种(系)进行耐盐性评价.结果表明: 随盐胁迫浓度的增加,花生出苗时间延长,对植株形态建成抑制加重,物质积累减少.鉴定花生品种耐盐性强弱的适宜盐胁迫浓度为0.30%~0.45%.采用隶属函数值法将10个指标归结为平均隶属函数值,根据不同胁迫浓度下各指标与平均隶属函数值之间的相关性大小,植株鲜质量、地上部鲜质量、地下部鲜质量、地下部干质量、株高和主茎高均较大,可作为首选指标,植株干质量、地上部干质量、主根长和出苗速率均较小,可作为辅助指标综合判断品种的耐盐能力.200个品种(系)在不同盐胁迫浓度下均可分成高度耐盐型、耐盐型、盐敏感型和高度盐敏感型4组.随盐胁迫强度加大,耐盐品种数量下降,而盐敏感品种数量上升.部分品种在低、中、高盐胁迫强度下表现出统一性(均耐盐或均敏感);部分品种存在差异性,即低胁迫强度下表现耐盐性而在高胁迫强度下表现盐敏感性.  相似文献   

17.
Root-zone constraints and plant-based solutions for dryland salinity   总被引:5,自引:0,他引:5  
Limitations to agricultural productivity imposed by the root-zone constraints in Australian dryland soils are severe and need redemption to improve the yields of grain crops and thereby meet world demand. Physical, chemical and biological constraints in soil horizons impose a stress on the plant and restrict plant growth and development. Hardsetting, crusting, compaction, salinity, sodicity, acidity, alkalinity, nutrient deficiencies and toxicities due to boron, carbonates and aluminium are the major factors that cause these constraints. Further, subsoils in agricultural regions in Australia have very low organic matter and biological activity. Dryland salinity is currently given wide attention in the public debate and government policies in Australia, but they only focus on salinity induced by shallow groundwater. However, the occurrence of transient salinity in root-zone layers in the regions where water tables are deep is an important issue with potential for larger economic loss than water table-induced seepage salinity. Root-zone constraints pose a challenge for salinity mitigation in recharge as well as discharge zones. In recharge zones, reduced water movement in sodic horizons results in salt accumulation in the root zone resulting in chemical and physical constraints that reduce transpiration that, in turn, upsets salt balance and plant growth. High salinity in soil and groundwater restricts the ability of plants to reduce water table in discharge zones. Thus plant-based strategies must address different kinds of limitations in soil profiles, both in recharge and discharge zones. In this paper we give an overview of plant response to root-zone constraints but with an emphasis on the processes of salt accumulation in the root-zone of soils. We also examine physical and chemical methods to overcome subsoil limitations, the ability of plants to adapt to and ameliorate these constraints, soil modification by management of agricultural and forestry ecosystems, the use of biological activity, and plant breeding for resistance to the soil constraints. We emphasise that soil scientists in cooperation with agronomists and plant breeders should design site-specific strategies to overcome multiple soil constraints, with vertical and lateral variations, and to develop plant-based solutions for dryland salinity.  相似文献   

18.
The shore crab Carcinus maenas (L.) reported hitherto not to express endogenous circatidal rhythmicity in winter, is shown not to lose the ability to express such rhythmicity. Crabs maintained in constant reduced salinity in winter exhibit circatidal and circadian rhythms similar to the normal endogenous rhythms of summer caught crabs.In sinusoidal changes of salinity of tidal periodicity, reductions of salinity and increases to ambient sea water induced increased locomotor activity. The former were purely exogenous responses but the latter were also observed to entrain the underlying endogenously controlled circatidal pattern of behaviour.The occurrence of separate exogenous and endogenous responses to different phases of imposed salinity cycles has implications when seeking to understand rhythmic locomotor activity of crabs on the shore and in the search for components of the underlying physiological clock mechanism.  相似文献   

19.
The haloalkaliphile Halomonas campisalis, isolated near Soap Lake, Washington, was grown under both aerobic and denitrifying conditions from 0 to 260 g L(-1) NaCl, with optimal growth occurring at 20 and 30 g L(-1) NaCl, respectively. Halomonas campisalis was observed to produce high concentrations of compatible solutes, most notably ectoine (up to 500 mM within the cytoplasm), but hydroxyectoine and glycine betaine were also detected. The types and amounts of compatible solutes produced depended on salinity and specific growth rate, as well as on the terminal electron acceptor available (O(2) or NO(3) (-)). A decrease in ectoine production was observed with NO(3) (-) as compared with O(2) as the terminal electron acceptor. In addition, changes in the phospholipid fatty acid composition were measured with changing salinity. An increase in trans fatty acids was observed in the absence of salinity, and may be a response to membrane instability. Cyclic fatty acids were also observed to increase, both in the absence of salinity, and at very high salinities, indicating cell stress at these conditions.  相似文献   

20.
Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na+ and Cl? around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand–clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na+ and Cl? concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P  < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na+ accumulation in the soil increased until the Na+ concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号