首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The uncoordinated, egg-laying-defective mutation, unc-93(e1500) III, of the nematode Caenorhabditis elegans spontaneously reverts to a wild-type phenotype. We describe 102 spontaneous and mutagen-induced revertants that define three loci, two extragenic (sup-9 II and sup-10 X) and one intragenic. Genetic analysis suggests that e1500 is a rare visible allele that generates a toxic product and that intragenic reversion, resulting from the generation of null alleles of the unc-93 gene, eliminates the toxic product. We propose that the genetic properties of the unc-93 locus, including the spontaneous reversion of the e1500 mutation, indicate that unc-93 may be a member of a multigene family. The extragenic suppressors also appear to arise as the result of elimination of gene activity; these genes may encode regulatory functions or products that interact with the unc-93 gene product. Genes such as unc-93, sup-9 and sup-10 may be useful for genetic manipulations, including the generation of deficiencies and mutagen testing.  相似文献   

2.
Phenotypic reversion of the rubber-band, muscle-defective phenotype conferred by unc-93(e1500) was used to determine the utility of N-ethyl-N-nitrosourea (ENU) as a mutagen for genetic research in Caenorhabditis elegans. In this system, ENU produces revertants at a frequency of 3 X 10(-4), equivalent to that of the commonly used mutagen, EMS. The gene identity of 154 ENU-induced revertants shows that the distribution of alleles between three possible suppressor genes differs from that induced by EMS. A higher percentage of revertants are alleles of unc-93 and many fewer are alleles of sup-9 and sup-10. Three revertants complement the three known suppressor genes; they may therefore identify a new gene product(s) involved in this system of excitation-contraction coupling in C. elegans. Molecular characterization of putative unc-93 null alleles reveals that the base changes induced by ENU are quite different from those induced by EMS; specifically we see an increased frequency of A/T -> G/C transitions. The frequency of ENU-induced intragenic deletions is found to be 13%. We suggest that ENU, at concentrations below 5 mM, will be a superior mutagen for studies of protein function in C. elegans.  相似文献   

3.
Revertants of unc-15(e73)I, a paralyzed mutant with an altered muscle paramyosin, include six dominant and two recessive intragenic unc-15 revertants, two new alleles of the previously identified suppressor gene, sup-3 V, and a new suppressor designated sup-19(m210)V. The recessive intragenic unc-15 revertants exhibit novel alterations in paramyosin paracrystal structure and distribution, and these alterations are modified by interaction with unc-82(e1220)IV, another mutation that affects paramyosin. A strain containing both unc-15 and a mutation in sup-3 V that restores movement was mutagenized, and paralyzed mutants resembling unc-15 were isolated. Twenty mutations that interfere with suppression were divided into three classes (nonmuscle, sus-1, and mutations within sup-3) based on phenotype, genetic map position and dominance. The nonmuscle mutations include dumpy and uncoordinated types that have no obvious direct effect on muscle organization. Two recessive mutations define a new gene, sus-1 III. These mutations modify the unc-15(e73) phenotype to produce a severely paralyzed, dystrophic double mutant that is not suppressed by sup-3. Five semidominant, intragenic sup-3 antisuppressor mutations, one of which occurred spontaneously, restore the wild-type sup-3 phenotype of nonsuppression. However, reversion of these mutants generated no new suppressor alleles of sup-3, suggesting that the sup-3 antisuppressor alleles are not wild type but may be null alleles.  相似文献   

4.
A Second Informational Suppressor, SUP-7 X, in CAENORHABDITIS ELEGANS   总被引:15,自引:14,他引:1  
More than 30 independent suppressor mutations have been obtained in the nematode C. elegans through reversion analysis of two unc-13 mutants. Many of the new isolates map to the region of the previously identified informational suppressor, sup-5 III (Waterston and Brenner 1978). Several of the other suppressor mutations map to the left half of the X-linkage group and define a second suppressor gene, sup-7 X. In tests against 40 mutations in six genes, the sup-7(st5) allele was found to suppress to a greater extent the same alleles acted on by sup-5(e1464). Like sup-5(e1464), sup-7(st5) acts on null alleles of the myosin heavy-chain gene unc-54 I (MacLeod et al. 1977; MacLeod, Waterston and Brenner 1977) and the putative paramyosin gene unc-15 I (Waterston et al. 1977). Chemical analysis of unc-15(e1214); sup-7(st5) animals show that paramyosin is restored to more than 30% of the wild-type level.—As was observed for sup-5(e1464), suppression by sup-7(st5) is dose dependent and is greater in animals grown at 15° than at 25°. However, associated with this increased suppression is a decreased viability of sup-7(st5) homozygotes. Reversion of the lethality has resulted in the isolation of deficiency mutations that complement st5 lethality, but lack suppressor function. These properties of sup-7(st5) suggest that it, like sup-5(e1464), is an informational suppressor of null alleles, and its reversion via deficiencies further narrows the possible explanations of its action.  相似文献   

5.
We are studying five interacting genes involved in the regulation or coordination of muscle contraction in Caenorhabditis elegans. A distinctive ``rubber-ban'''' muscle-defective phenotype was previously shown to result from rare altered-function mutations in either of two of these genes, unc-93 and sup-10. Null mutations in sup-9, sup-10, sup-18 or unc-93 act as essentially recessive suppressors of these rubber-band mutations. In this work, we identify three new classes of sup-9 alleles: altered-function rubber-band, partial loss-of-function and dominant-suppressor. The existence of rubber-band mutations in sup-9, sup-10 and unc-93 and the suppression of these mutations by null mutations in any of these three genes suggest that these proteins are required at the same step in muscle contraction. Moreover, allele-specific interactions shown by the partial loss-of-function mutations indicate that the products of these interacting genes may physically contact each other in a multiple subunit protein complex. Finally, the phenotypes of double rubber-band mutant combinations suggest that the rubber-band mutations affect a neurogenic rather than a myogenic input in excitation-contraction coupling in muscle.  相似文献   

6.
Certain mutations in the unc-105 II gene of the nematode Caenorhabditis elegans have dominant effects on morphology and behavior: animals become small, severely hypercontracted and paralyzed. These unc-105 mutants revert both spontaneously and with mutagens at high frequencies to a wild-type phenotype. Most of the reversion events are intragenic, apparently because the null (loss-of-function) phenotype of unc-105 is wild type. One revertant defined an extragenic suppressor locus, sup-20 X. Such suppressor alleles of sup-20 are rare, and the apparent null phenotype of sup-20 is embryonic lethality. By constructing animals genetically mosaic for sup-20, we have shown that the primary effect of sup-20 is in muscle cells. In addition to mutations in sup-20, other mutations causing muscle defects, such as unc-54 and unc-22 mutations, suppress the hypercontracted phenotype of unc-105. The ease of identifying nonhypercontracted revertants of unc-105 mutants greatly facilitates the isolation of new mutants defective in muscle structure and function.  相似文献   

7.
Novel nematode amber suppressors   总被引:8,自引:3,他引:5       下载免费PDF全文
Hodgkin J 《Genetics》1985,111(2):287-310
Nine amber suppressor mutations were isolated in the nematode Caenorhabditis elegans by reverting amber alleles of a sex-determining gene, tra-3. One suppressor maps to a known locus, sup-5 III , but the other eight map to three new loci, sup-21 X (five alleles), sup-22 IV (two alleles) and sup-23 IV (one allele). Amber alleles of tra-3 and of a dumpy gene, dpy-20, were used to measure the efficiency of suppression; the sup-21 and the sup-22 alleles were both shown to be heterogeneous and generally weaker suppressors than sup-5 alleles, which are homogeneous. The spectrum of mutations suppressed by a strong sup-21 allele, e1957, was investigated and compared to the spectra for the amber suppressors sup-5 III and sup-7 X, using amber alleles in 13 assorted genes. Some of the differences between these spectra may be due to limited tissue specificity in sup-21 expression.—Suppression of dpy-20 was used to show that the sex-linked suppressors sup-7 and sup-21 are not dosage compensated in male (XO) relative to hermaphrodite (XX).—Several uses of amber suppressors are critically discussed: for identifying null mutations, for varying levels of gene activity and for detecting maternal mRNA.  相似文献   

8.
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.  相似文献   

9.
A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality [like erd-2.1(RNAi); erd-2.2(RNAi)], indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.  相似文献   

10.
Reversion analysis of mutants of unc-22 IV, a gene affecting muscle structure and function in Caenorhabditis elegans, led to the isolation of six extragenic dominant suppressors of the “twitching” phenotype of unc-22 mutants. All six suppressors are new alleles of unc-54 I, the major body wall myosin heavy chain gene. Homozygous suppressor strains are slow, stiff and have normal muscle structure, whereas previously identified unc-54 alleles confer flaccid paralysis and drastic reduction in thick filament number and organization. Placement of the three suppressor mutations s74, s77 and s95 on the genetic fine structure map of unc-54 demonstrates that they are clustered near the right end of the map. Since this end of the gene corresponds to the 5′ end of the coding sequence, these suppressor mutations probably result in amino acid substitutions in the globular head of the myosin molecule, and should be of value in studies of myosin force generation.  相似文献   

11.
Over 100 revertants of five different amber mutants were analyzed by Southern blot hybridization using synthetic oligomers as probes to detect a single base change at the anticodon, CCA to CTA (amber), of tRNA(Trp) genes of Caenohrabditis elegans. Of the 12 members of the tRNA(Trp) gene family, a total of eight were converted to amber suppressor alleles. All eight encode identical tRNAs; three of these are new tRNA(Trp) suppressors, sup-21, sup-33 and sup-34. Previous results had suggested that individual suppressor tRNA genes were expressed differentially in a cell-type- or developmental stage-specific manner. To extend these observations to the new genes and to test the specificity of expression against additional genes, cross suppression tests of these eight amber suppressors were carried out against amber mutations in several different genes including genes likely to be expressed in the same cell-type: three nervous system-affecting genes, two muscle structure-affecting genes and two genes presumed to be expressed in hypodermis. Seven out of eight suppressors could be distinguished one from another by the spectrum of their suppression efficiencies. These results also provide further evidence of cell-type-specific patterns of expression in the nervous system, muscle and hypodermis. The suppression pattern of the suppressor against the two muscle-affecting genes, unc-15 and unc-52, suggested that either the suppressors are expressed in a developmental stage-specific manner or that the unc-52 products are expressed in cell-types other than muscle, possibly hypodermis.  相似文献   

12.
W. Shreffler  T. Magardino  K. Shekdar    E. Wolinsky 《Genetics》1995,139(3):1261-1272
Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels.  相似文献   

13.
The sup-5 III and sup-7 X suppressors in C. elegans have previously been shown to have many genetic properties in common with tRNA nonsense suppressors of microorganisms. We report here the results of two lines of investigation into the molecular basis of these suppressors. In one, which sought to determine the nature of suppressible alleles, we demonstrate through DNA sequencing studies that a suppressible allele, unc-54(e 1300) I, of the myosin heavy chain gene contains a C leads to T substitution, which changes a glutamine codon to amber terminator at residue 1903. In the other approach, which sought to define the nature of the suppressing activity, we show through in vitro translation studies that tRNA fractions from the suppressor strains, but not wild-type, promote the specific readthrough of amber terminators of three different messenger RNAs. We conclude that sup-5 and sup-7 result in readthrough of amber terminators in vivo through an altered tRNA.  相似文献   

14.
We have characterized recessive and dominant omnipotent suppressor mutations obtained by conversion of the leu2-1 UAA mutation and the met8-UAG mutation in a ψ+ strain of Saccharomyces cerevisiae. The suppressors that act recessively upon these markers fell into two complementation groups; the sup47 and sup36 suppressors show linkage to the tyr1 locus and the aro1 locus, respectively. Of the suppressors acting dominantly upon both markers, those linked to the tyr1 locus are alleles of the SUP46 ribosomal mutation. The sup47 suppressors differ from the SUP46 suppressors not only in their suppressor activities in heterozygous diploids but also in their map positions relative to the tyr1 locus and their effects on the S11 ribosomal protein. The remaining dominant suppressors are not alleles of sup36 as judged by linkage analysis. The recessive suppressors and the dominant suppressors also differ in their effects on cell growth.  相似文献   

15.
A Visible Allele of the Muscle Gene sup-10 X of C. ELEGANS   总被引:3,自引:2,他引:1       下载免费PDF全文
In this paper, we extend our previous analyses of a set of genes in Caenorhabditis elegans that are involved in muscle structure and function: unc-93 III, sup-9 II, sup-10 X and sup-11 I. We describe an unusual, visible allele of sup-10, examine how this allele interacts genetically with mutations in other genes of this set and propose that the wild-type products of the unc-93 and sup-10 loci may be components of a protein complex. We also describe a new gene of this set, sup-18 III, and the interaction of sup-18 alleles with mutations in the other genes.  相似文献   

16.
17.
Zahler AM  Tuttle JD  Chisholm AD 《Genetics》2004,167(4):1689-1696
Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.  相似文献   

18.
A New Kind of Informational Suppression in the Nematode Caenorhabditis Elegans   总被引:16,自引:6,他引:10  
J. Hodgkin  A. Papp  R. Pulak  V. Ambros    P. Anderson 《Genetics》1989,123(2):301-313
Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor with morphogenetic effect on genitalia), in order to distinguish them from mab (male abnormal) genes that can mutate to produce abnormal genitalia but which do not act as suppressors (smg-1 and smg-2 are new names for two previously described genes, mab-1 and mab-11). The patterns of suppression, and the interactions between the different smg genes, are described and discussed. In general, suppression is recessive and incomplete, and at least some of the suppressed mutations are hypomorphic in nature. A suppressible allele of unc-54 contains a deletion in the 3' noncoding region of the gene; the protein coding region of the gene is apparently unaffected. This suggests that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.  相似文献   

19.
Summary The genetic organization of unc-26(IV) and adjacent regions was studied in Caenorhabditis elegans. We constructed a fine structure genetic map of unc-26(IV), a gene that affects locomotion and pharyngeal muscle movement but not muscle structure. Eleven alleles were positioned relative to each other recombinationally and were classified according to phenotypic severity. The unc-26 gene spans at least 0.026 map units, which is exceptionally large for a C. elegans gene. All but one allele, e205, are amorphic alleles. Interestingly, e205 is hypomorphic but also suppressible by the amber suppressor sup-7. Nineteen lethal mutations in the unc-26 region were isolated and characterized. The unc-26 region is subdivided into four zones by five deficiency breakpoints. These mutations fall into 15 complementation groups. The stages of development affected by these mutations were determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号