首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Ubiquitous low‐grade thermal energy, which is typically wasted without use, can be extremely valuable for continuously powering electronic devices such as sensors and wearable electronics. A popular choice for waste heat recovery has been thermoelectric energy conversion, but small output voltage without energy‐storing capability necessitates additional components such as a voltage booster and a capacitor. Here, a novel method of simultaneously generating a large voltage from a temperature gradient and storing electrical energy without losing the benefit of solid‐state no‐moving part devices like conventional thermoelectrics is reported. Thermally driven ion diffusion is used to greatly increase the output voltage (8 mV K?1) with polystyrene sulfonic acid (PSSH) film. Polyaniline‐coated electrodes containing graphene and carbon nanotube sandwich the PSSH film where thermally induced voltage‐enabled electrochemical reactions, resulting in a charging behavior without an external power supply. With a small temperature difference (5 K) possibly created over wearable energy harvesting devices, the thermally chargeable supercapacitor produce 38 mV with a large areal capacitance (1200 F m?2). It is anticipated that the attempt with thermally driven ion diffusion behaviors initiates a new research direction in thermal energy harvesting.  相似文献   

2.
All‐solid‐state on‐chip SiC supercapacitors (SCs) based on free‐standing SiC nanowire arrays (NWAs) are reported. In comparison to the widely used technique based on the interdigitated fingers, the present strategy can be much more facile for constructing on‐chip SCs devices, which is directly sandwiched with a solid electrolyte layer between two pieces of SiC NWAs film without any substrate. The mass loading of active materials of on‐chip SiC SCs can be up to ≈5.6 mg cm?2, and the total device thickness is limited in ≈40 µm. The specific area energy and power densities of the SCs device reach 5.24 µWh cm?2 and 11.2 mW cm?2, and their specific volume energy and power densities run up to 1.31 mWh cm–3 and 2.8 W cm?3, respectively, which are two orders of magnitude higher than those of state‐of‐the‐art SiC‐based SCs, and also much higher than those of other solid‐state carbon‐based SCs ever reported. Furthermore, such on‐chip SCs exhibit superior rate capability and robust stability with over 94% capacitance retention after 10 000 cycles at a scan rate of 100 mV s?1, representing their high performance in all merits.  相似文献   

3.
An efficient perovskite photovoltaic‐thermoelectric hybrid device is demonstrated by integrating the hole‐conductor‐free perovskite solar cell based on TiO2/ZrO2/carbon structure and the thermoelectric generator. The whole solar spectrum of AM 1.5 G is fully utilized with the ≈1.55 eV band gap perovskite (5‐AVA)x(MA)1?xPbI3 absorbing the visible light and the carbon back contact absorbing the infrared light. The added thermoelectric generator improves the device performance by converting the thermal energy into electricity via the Seebeck effect. An optimized hybrid device is obtained with a maximum point power output of 20.3% and open‐circuit voltage of 1.29 V under the irradiation of 100 mW cm?2.  相似文献   

4.
Earth‐abundant Cu2BaSnS4 (CBTS) thin films exhibit a wide bandgap of 2.04–2.07 eV, a high absorption coefficient > 104 cm?1, and a p‐type conductivity, suitable as a top‐cell absorber in tandem solar cell devices. In this work, sputtered oxygenated CdS (CdS:O) buffer layers are demonstrated to create a good p–n diode with CBTS and enable high open‐circuit voltages of 0.9–1.1 V by minimizing interface recombination. The best power conversion efficiency of 2.03% is reached under AM 1.5G illumination based on the configuration of fluorine‐doped SnO2 (back contact)/CBTS/CdS:O/CdS/ZnO/aluminum‐doped ZnO (front contact).  相似文献   

5.
2D transition metal carbides and nitrides, known as MXenes, are an emerging class of 2D materials with a wide spectrum of potential applications, in particular in electrochemical energy storage. The hydrophilicity of MXenes combined with their metallic conductivity and surface redox reactions is the key for high‐rate pseudocapacitive energy storage in MXene electrodes. However, symmetric MXene supercapacitors have a limited voltage window of around 0.6 V due to possible oxidation at high anodic potentials. In this study, the fact that titanium carbide MXene (Ti3C2Tx) can operate at negative potentials in acidic electrolyte is exploited, to design an all‐pseudocapacitive asymmetric device by combining it with a ruthenium oxide (RuO2) positive electrode. This asymmetric device operates at a voltage window of 1.5 V, which is about two times wider than the operating voltage window of symmetric MXene supercapacitors, and is the widest voltage window reported to date for MXene‐based supercapacitors. The complementary working potential windows of MXene and RuO2, along with proton‐induced pseudocapacitance, significantly enhance the device performance. As a result, the asymmetric devices can deliver an energy density of 37 µW h cm?2 at a power density of 40 mW cm?2, with 86% capacitance retention after 20 000 charge–discharge cycles. These results show that pseudocapacitive negative MXene electrodes can potentially replace carbon‐based materials in asymmetric electrochemical capacitors, leading to an increased energy density.  相似文献   

6.
We report the synthesis of novel acceptor‐substituted oligothiophenes and their application in m‐i‐p type planar heterojunction solar cells. Optical absorption spectra and electrochemical properties of the dyes are investigated. The determined energy levels of these dyes suggest that they should be ideal for use in heterojunction solar cells. We further investigate the influence of acceptor groups on the device performance by introducing 1,1‐dicyano‐2‐methyl‐vinyl and 1,1‐dicyano‐2‐phenyl‐vinyl groups, respectively, as acceptor units. Photovoltaic devices incorporating these dyes show an open circuit voltage of up to 0.96 V and power conversion efficiencies in the range of 1.5–3.0% under full sun illumination (simulated AM 1.5G sunlight, 100 mW cm?2).  相似文献   

7.
1D nanostructures of soft ferroelectric materials exert promising potential in the fields of energy harvesting and flexible and printed nanoelectronics. Here, improved piezoelectric properties, energy‐harvesting performance, lower coercive fields, and the polarization orientation of poly(vinylidene fluoride–trifluoroethylene) (PVDF‐TrFE) nanotubes synthesized with nanoconfinement effect are reported. X‐ray diffraction (XRD) patterns of the nanotubes show the peak corresponding to the planes of (110)/(200), which is a signature of ferroelectric beta phase formation. Piezoforce spectroscopy measurements on the free‐standing horizontal nanotubes bundles reveal that the effective polarization direction is oriented at an inclination to the long axis of the nanotubes. The nanotubes exhibit a coercive field of 18.6 MV m?1 along the long axis and 40 MV m?1 (13.2 MV m?1 considering the air gap) in a direction perpendicular to the long axis, which is lower than the film counterpart of 50 MV m?1. The poled 200 nm nanotubes, with 40% reduction in poling field, give larger piezoelectric d33 coefficient values of 44 pm V?1, compared to poled films (≈20 pm V?1). The ferroelectric nanotubes deliver superior energy harvesting performance with an output voltage of ≈4.8 V and power of 2.2 μW cm?2, under a dynamic compression pressure of 0.075 MPa at 1 Hz.  相似文献   

8.
Colloidal quantum dots (CQDs) are attractive materials for thermoelectric applications due to their simple and low‐cost processing; advantageously, they also offer low thermal conductivity and high Seebeck coefficient. To date, the majority of CQD thermoelectric films reported upon have been p‐type, while only a few reports are available on n‐type films. High‐performing n‐ and p‐type films are essential for thermoelectric generators (TEGs) with large output voltage and power. Here, high‐thermoelectric‐performance n‐type CQD films are reported and showcased in high‐performance all‐CQD TEGs. By engineering the electronic coupling in the films, a thorough removal of insulating ligands is achieved and this is combined with excellent surface trap passivation. This enables a high thermoelectric power factor of 24 µW m?1 K?2, superior to previously reported n‐type lead chalcogenide CQD films operating near room temperature (<1 µW m?1 K?2). As a result, an all‐CQD film TEG with a large output voltage of 0.25 V and a power density of 0.63 W m?2 at ?T = 50 K is demonstrated, which represents an over fourfold enhancement to previously reported p‐type only CQD TEGs.  相似文献   

9.
Low‐temperature solution‐processed high‐efficiency colloidal quantum dot (CQD) photovoltaic devices are developed by improving the interfacial properties of p–n heterojunctions. A unique conjugated polyelectrolyte, WPF‐6‐oxy‐F, is used as an interface modification layer for ZnO/PbS‐CQD heterojunctions. With the insertion of this interlayer, the device performance is dramatically improved. The origins of this improvement are determined and it is found that the multifunctionality of the WPF‐6‐oxy‐F interlayer offers the following essential benefits for the improved CQD/ZnO junctions: (i) the dipole induced by the ionic substituents enhances the quasi‐Fermi level separation at the heterojunction through favorable energy band‐bending, (ii) the ethylene oxide groups containing side chains can effectively passivate the interfacial defect sites of the heterojunction, and (iii) these effects occur without deterioration in the intrinsic depletion region or the series resistance of the device. All of the figures‐of‐merit of the devices are improved as a result of the enhanced built‐in potential (electric field) and the reduced interfacial charge recombination at the heterojunction. The benefits due to the WPF‐6‐oxy‐F interlayer are generally applicable to various types of PbS/ZnO heterojunctions. Finally, CQD photovoltaic devices with a power conversion efficiency of 9% are achievable, even by a solution process at room temperature in an air atmosphere. The work suggests a useful strategy to improve the interfacial properties of p–n heterojunctions by using polymeric interlayers.  相似文献   

10.
Tremendous efforts have been invested in the development of the internet of things during the past 10 years. Implantable sensors still need embedded miniaturized energy harvesting devices, since commercialized thin films and microbatteries do not provide sufficient power densities and suffer from limited lifetime. Therefore, micro‐supercapacitors are good candidates to store energy and deliver power pulses while providing non‐constant voltage output with time. However, multistep expensive protocols involving mask aligners and sophisticated cleanrooms are used to prepare these devices. Here, a simple and versatile laser‐writing procedure to integrate flexible micro‐supercapacitors and microbatteries on current‐collector‐free polyimide foils is reported, starting from commercial powders. Ruthenium oxide (RuO2)‐based micro‐supercapacitors are prepared by laser irradiation of a bilayered tetrachloroauric acid (HAuCl4 · 3H2O)–cellulose acetate/RuO2 film deposited by spin‐coating, which leads to adherent Au/RuO2 electrodes with a unique pillar morphology. The as‐prepared microdevices deliver 27 mF cm?2/540 F cm?3 in 1 m H2SO4 and retain 80% of the initial capacitance after 10 000 cycles. This simple process is applied to make carbon‐based micro‐supercapacitors, as well as metal oxide based pseudocapacitors and battery electrodes, thus offering a straightforward solution to prepare low‐cost flexible microdevices at a large scale.  相似文献   

11.
A small molecular metal‐chelate complex, tris(8‐hydroxyquinoline‐5‐sulfonic acid) aluminum (AlQSA3), that has three sulfonic acid groups per molecule leading to an excellent solubility in water is reported as a liquid‐free perfect solid‐state electrolyte for flexible film‐type all‐solid‐state energy storage devices. The AlQSA3 material is synthesized by one‐step reaction of aluminum triisopropoxide and 8‐hydroxyquinoline‐5‐sulfonic acid. The aqueous solutions of AlQSA3 are applied to fabricate flexible film‐type all‐solid state electric double layer capacitors with indium‐tin oxide thin film electrodes. The ion conductivity of the AlQSA3 film reaches 0.116 mS cm?1, while a pronounced hysteresis are obtained in the cyclic voltammetry measurement. The AlQSA3 film capacitors exhibit an output voltage of 1.5 V at 20 μA cm?2, which is considerably stable by the repeated operation. In particular, the peak output voltage is well kept even after 180° bending for 500 times in the case of the flexible AlQSA3 film capacitors.  相似文献   

12.
Wearable textile energy storage systems are rapidly growing, but obtaining carbon fiber fabric electrodes with both high capacitances to provide a high energy density and mechanical strength to allow the material to be weaved or knitted into desired devices remains challenging. In this work, N/O‐enriched carbon cloth with a large surface area and the desired pore volume is fabricated. An electrochemical oxidation method is used to modify the surface chemistry through incorporation of electrochemical active functional groups to the carbon surface and to further increase the specific surface area and the pore volume of the carbon cloth. The resulting carbon cloth electrode presents excellent electrochemical properties, including ultrahigh areal capacitance with good rate ability and cycling stability. Furthermore, the fabricated symmetric supercapacitors with a 2 V stable voltage window deliver ultrahigh energy densities (6.8 mW h cm?3 for fiber‐shaped samples and 9.4 mW h cm?3 for fabric samples) and exhibit excellent flexibility. The fabric supercapacitors are further tested in a belt‐shaped device as a watchband to power an electronic watch for ≈9 h, in a heart‐shaped logo to supply power for ≈1 h and in a safety light that functions for ≈1 h, indicating various promising applications of these supercapacitors.  相似文献   

13.
Carbon dots have been recognized as one of the most promising candidates for the oxygen reduction reaction (ORR) in alkaline media. However, the desired ORR performance in metal–air batteries is often limited by the moderate electrocatalytic activity and the lack of a method to realize good dispersion. To address these issues, herein a biomass‐deriving method is reported to achieve the in situ phosphorus doping (P‐doping) of carbon dots and their simultaneous decoration onto graphene matrix. The resultant product, namely P‐doped carbon dot/graphene (P‐CD/G) nanocomposites, can reach an ultrahigh P‐doping level for carbon nanomaterials. The P‐CD/G nanocomposites are found to exhibit excellent ORR activity, which is highly comparable to the commercial Pt/C catalysts. When used as the cathode materials for a primary liquid Al–air battery, the device shows an impressive power density of 157.3 mW cm?2 (comparing to 151.5 mW cm?2 of a similar Pt/C battery). Finally, an all‐solid‐state flexible Al–air battery is designed and fabricated based on our new nanocomposites. The device exhibits a stable discharge voltage of ≈1.2 V upon different bending states. This study introduces a unique biomass‐derived material system to replace the noble metal catalysts for future portable and wearable electronic devices.  相似文献   

14.
Composites of polypyrrole (PPy) and Cladophora nanocellulose, reinforced with 8 μm‐thick chopped carbon filaments, can be used as electrode materials to obtain paper‐based energy‐storage devices with unprecedented performance at high charge and discharge rates. Charge capacities of more than 200 C g?1 (PPy) are obtained for paper‐based electrodes at potential scan rates as high as 500 mV s?1, whereas cell capacitances of ~60–70 F g?1 (PPy) are reached for symmetric supercapacitor cells with capacitances up to 3.0 F (i.e.,0.48 F cm?2) when charged to 0.6 V using current densities as high as 31 A g?1 based on the PPy weight (i.e., 99 mA cm?2). Energy and power densities of 1.75 Wh kg?1 and 2.7 kW kg?1, respectively, are obtained when normalized with respect to twice the PPy weight of the smaller electrode. No loss in cell capacitance is seen during charging/discharging at 7.7 A g?1 (PPy) over 1500 cycles. It is proposed that the nonelectroactive carbon filaments decrease the contact resistances and the resistance of the reduced PPy composite. The present straightforward approach represents significant progress in the development of low‐cost and environmentally friendly paper‐based energy‐storage devices for high‐power applications.  相似文献   

15.
2D halide perovskite materials have shown great advantages in terms of stability when applied in a photovoltaic device. However, the impediment of charge transport within the layered structure drags down the device performance. Here for the first time, a 3D–2D (MAPbI3‐PEA2Pb2I4) graded perovskite interface is demonstrated with synergistic advantages. In addition to the significantly improved ambient stability, this graded combination modifies the interface energy level in such a way that reduces interface charge recombination, leading to an ultrahigh V oc at 1.17 V, a record for NiO‐based p‐i‐n photovoltaic devices. Moreover, benefiting from the graded structure induced continuously upshifts energy level, the photovoltaic device attains a high J sc of 21.80 mA cm?2 and a high fill factor of 0.78, resulting in an overall power conversion efficiency (PCE) of 19.89%. More importantly, it is showed that such a graded interface structure also suppresses ion migration in the device, accounting for its significantly enhanced thermal stability.  相似文献   

16.
Potassium‐ion hybrid capacitors (PIHCs), elaborately integrate the advantages of high output power as well as long lifespan of supercapacitors and the high energy density of batteries, and exhibit great possibilities for the future generations of energy storage devices. The critical next step for future implementation lies in exploring a high‐rate battery‐type anode with an ultra‐stable structure to match the capacitor‐type cathode. Herein, a “dual‐carbon” is constructed, in which a three‐dimensional nitrogen‐doped microporous carbon polyhedron (NMCP) derived from metal‐organic frameworks is tightly wrapped by two‐dimensional reduced graphene oxide (NMCP@rGO). Benefiting from the synergistic effect of the inner NMCP and outer rGO, the NMCP@rGO exhibits a superior K‐ion storage capability with a high reversible capacity of 386 mAh g?1 at 0.05 A g?1 and ultra‐long cycle stability with a capacity of 151.4 mAh g?1 after 6000 cycles at 5.0 A g?1. As expected, the as‐assembled PIHCs with a working voltage as high as 4.2 V present a high energy/power density (63.6 Wh kg?1 at 19 091 W kg?1) and excellent capacity retention of 84.7% after 12 000 cycles. This rational construction of advanced PIHCs with excellent performance opens a new avenue for further application and development.  相似文献   

17.
A flexible asymmetric supercapacitor (ASC) with high energy density is designed and fabricated using flower‐like Bi2O3 and MnO2 grown on carbon nanofiber (CNF) paper as the negative and positive electrodes, respectively. The lightweight (1.6 mg cm?2), porous, conductive, and flexible features make the CNF paper an ideal support for guest active materials, which permit a large areal mass of 9 mg cm?2 for Bi2O3 (≈85 wt% of the entire electrode). Thus, the optimal device with an operation voltage of 1.8 V can deliver a high energy density of 43.4 μWh cm?2 (11.3 W h kg?1, based on the total electrodes) and a maximum power density of 12.9 mW cm?2 (3370 W kg?1). This work provides an example of large areal mass and flexible electrode for ASCs with high areal capacitance and high energy density, holding great promise for future flexible electronic devices.  相似文献   

18.
Potassium‐ion hybrid capacitors (PIHCs) hold the advantages of high‐energy density of batteries and high‐power output of supercapacitors and thus present great promise for the next generation of electrochemical energy storage devices. One of the most crucial tasks for developing a high‐performance PIHCs is to explore a favorable anode material with capability to balance the kinetics mismatch between battery‐type anodes and capacitor‐type cathode. Herein, a reliable route for fabricating sulfur and nitrogen codoped 3D porous carbon nanosheets (S‐N‐PCNs) is reported. Systematic characterizations coupled with kinetics analysis indicate that the doped heteroatoms of sulfur and nitrogen and the amplified graphite interlayer can provide ample structural defects and redox active sites that are beneficial for improving pseudocapacitive activity, enabling fast kinetics toward efficient potassium‐ion storage. The S‐N‐PCNs are demonstrated to exhibit superior potassium storage capability with a high capacity of 107 mAh g?1 at 20 A g?1 and long cycle stability. The as‐developed PIHCs present impressive electrochemical performance with an operating voltage as high as 4.0 V, an energy density of 187 Wh kg?1, a power density of 5136 W kg?1, and a capacity retention of 86.4% after 3000 cycles.  相似文献   

19.
Wearable and portable electronics have brought great convenience. These battery‐powered commercial devices have a limited lifetime and require recharging, which makes more extensive applications challenging. Here, a battery‐like self‐charge universal module (SUM) is developed, which is able to efficiently convert mechanical energy into electrical energy and store it in one device. An integrated SUM consists of a power management unit and an energy harvesting unit. Compared to other mechanical energy harvesting devices, SUM is more ingenious, efficient and can be universally used as a battery. Under low frequency (5 Hz), a SUM can deliver an excellent normalized output power of 2 mW g?1. After carrying several SUMs and jogging for 10 min, a commercial global positioning system module is powered and works continuously for 0.5 h. SUMs can be easily assembled into different packages for powering various commercial electronics, demonstrating the great application prospects of SUM as a sustainable battery‐like device for wearable and portable electronics.  相似文献   

20.
Here, a simple active materials synthesis method is presented that boosts electrode performance and utilizes a facile screen‐printing technique to prepare scalable patterned flexible supercapacitors based on manganese hexacyanoferrate‐manganese oxide and electrochemically reduced graphene oxide electrode materials (MnHCF‐MnOx/ErGO). A very simple in situ self‐reaction method is developed to introduce MnOx pseudocapacitor material into the MnHCF system by using NH4F. This MnHCF‐MnOx electrode materials can deliver excellent capacitance of 467 F g?1 at a current density of 1 A g?1, which is a 2.4 times capacitance increase compared to MnHCF. In addition a printed, patterned, flexible MnHCF‐MnOx/ErGO supercapacitor is fabricated, showing a remarkable areal capacitance of 16.8 mF cm?2 and considerable energy and power density of 0.5 mWh cm?2 and 0.0023 mW cm?2, respectively. Furthermore, the printed patterned flexible supercapacitors also exhibit exceptional flexibility, and the capacitance remains stable, even while bending to various angles (60°, 90°, and 180°) and for 100 cycles. The flexible supercapacitor arrays integrated by multiple prepared single supercapacitors can power various LEDs even in the bent states. This approach offers promising opportunities for the development of printable energy storage materials and devices with high energy density, large scalability, and excellent flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号