首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
Potassium‐ion hybrid capacitors (PIHCs), elaborately integrate the advantages of high output power as well as long lifespan of supercapacitors and the high energy density of batteries, and exhibit great possibilities for the future generations of energy storage devices. The critical next step for future implementation lies in exploring a high‐rate battery‐type anode with an ultra‐stable structure to match the capacitor‐type cathode. Herein, a “dual‐carbon” is constructed, in which a three‐dimensional nitrogen‐doped microporous carbon polyhedron (NMCP) derived from metal‐organic frameworks is tightly wrapped by two‐dimensional reduced graphene oxide (NMCP@rGO). Benefiting from the synergistic effect of the inner NMCP and outer rGO, the NMCP@rGO exhibits a superior K‐ion storage capability with a high reversible capacity of 386 mAh g?1 at 0.05 A g?1 and ultra‐long cycle stability with a capacity of 151.4 mAh g?1 after 6000 cycles at 5.0 A g?1. As expected, the as‐assembled PIHCs with a working voltage as high as 4.2 V present a high energy/power density (63.6 Wh kg?1 at 19 091 W kg?1) and excellent capacity retention of 84.7% after 12 000 cycles. This rational construction of advanced PIHCs with excellent performance opens a new avenue for further application and development.  相似文献   

2.
Potassium ion storage technology as a promising substitute for the well‐developed lithium ion storage technology is still at the infancy stage of development, and exploring suitable electrode materials is critical for its practical application. Here, the great feasibility of disordered, large interlayer spacing, and oxygen‐rich carbon nanosheets (CNSs) prepared by chemical vapor deposition for potassium ion storage applications is demonstrated. As an anode material, the CNSs exhibit outstanding rate capability as well as excellent cyclic stability. Taking advantage of this, a potassium ion hybrid capacitor (PIHC) is constructed by employing such CNSs as the battery‐type anode and activated carbon as the capacitor‐type cathode. The resulting device displays a high energy density of 149 Wh kg?1, an ultrahigh power output of 21 kW kg?1, as well as a long cycling life (80% capacity retention after 5000 cycles), which are all close to the state‐of‐the‐art values for PIHCs. This work promotes the development of high‐performance anode material for potassium ion storage devices, and the designed PIHC pushes the energy density and power density to a higher level.  相似文献   

3.
Among the negative electrode materials for potassium ion batteries, carbon is very promising because of its low cost and environmental benignity. However, the relatively low storage capacity and sluggish kinetics still hinder its practical application. Herein, a large scalable sulfur/nitrogen dual‐doped hard carbon is prepared via a facile pyrolysis process with low‐cost sulfur and polyacrylonitrile as precursors. The dual‐doped hard carbon exhibits hierarchical structure, abundant defects, and functional groups. The material delivers a high reversible potassium storage capacity and excellent rate performance. In particular, a high reversible capacity of 213.7 and 144.9 mA h g?1 can be retained over 500 cycles at 0.1 A g?1 and 1200 cycles at 3 A g?1, respectively, demonstrating remarkable cycle stability at both low and high rates, superior to the other carbon materials reported for potassium storage, to the best of the authors' knowledge. Structure and kinetics studies suggest that the dual‐doping enhances the potassium diffusion and storage, profiting from the formation of a hierarchical structure, introduction of defects, and generation of increased graphitic and pyridinic N sites. This study demonstrates that a facile and scalable pyrolysis strategy is effective to realize hierarchical structure design and heteroatom doping of carbon, to achieve excellent potassium storage performance.  相似文献   

4.
Soft carbon has attracted tremendous attention as an anode in rocking‐chair batteries owing to its exceptional properties including low‐cost, tunable interlayer distance, and favorable electronic conductivity. However, it fails to exhibit decent performance for sodium‐ion storage owing to difficulties in the formation of sodium intercalation compounds. Here, microporous soft carbon nanosheets are developed via a microwave induced exfoliation strategy from a conventional soft carbon compound obtained by pyrolysis of 3,4,9,10‐perylene tetracarboxylic dianhydride. The micropores and defects at the edges synergistically leads to enhanced kinetics and extra sodium‐ion storage sites, which contribute to the capacity increase from 134 to 232 mAh g?1 and a superior rate capability of 103 mAh g?1 at 1000 mA g?1 for sodium‐ion storage. In addition, the capacitance‐dominated sodium‐ion storage mechanism is identified through the kinetics analysis. The in situ X‐ray diffraction analyses are used to reveal that sodium ions intercalate into graphitic layers for the first time. Furthermore, the as‐prepared nanosheets can also function as an outstanding anode for potassium‐ion storage (reversible capacity of 291 mAh g?1) and dual‐ion full cell (cell‐level capacity of 61 mAh g?1 and average working voltage of 4.2 V). These properties represent the potential of soft carbon for achieving high‐energy, high‐rate, and low‐cost energy storage systems.  相似文献   

5.
Poor quality and insufficient productivity are two main obstacles for the practical application of graphene in electrochemical energy storage. Here, high‐quality crumpled graphene microflower (GmF) for high‐performance electrodes is designed. The GmF possesses four advantages simultaneously: highly crystallized defect‐free graphene layers, low stacking degree, sub‐millimeter continuous surface, and large productivity with low cost. When utilized as carbon host for sulfur cathode, the GmF‐sulfur hybrid delivers decent areal capacities of 5.2 mAh cm?2 at 0.1 C and 3.8 mAh cm?2 at 0.5 C. When utilized as cathode of Al‐ion battery, the GmF affords a high capacity of 100 mAh g?1 with 100% capacity retention after 5000 cycles and excellent rate capability from 0.1 to 20 A g?1. This facile and large‐scale producible GmF represents a meaningful high‐quality graphene powder for practical energy storage technology. Meanwhile, this unique high‐quality graphene design provides an effective route to improve electrochemical properties of graphene‐based electrodes.  相似文献   

6.
Carbon materials have attracted significant attention as anode materials for sodium ion batteries (SIBs). Developing a carbon anode with long‐term cycling stability under ultrahigh rate is essential for practical application of SIBs in energy storage systems. Herein, sulfur and nitrogen codoped mesoporous hollow carbon spheres are developed, exhibiting high rate performance of 144 mA h g?1 at 20 A g?1, and excellent cycling durability under ultrahigh current density. Interestingly, during 7000 cycles at a current density of 20 A g?1, the capacity of the electrode gradually increases to 180 mA h g?1. The mechanisms for the superior electrochemical performance and capacity improvement of the cells are studied by electrochemical tests, ex situ transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, and Raman analysis of fresh and cycled electrodes. The unique and robust structure of the material can enhance transport kinetics of electrons and sodium ions, and maintain fast sodium storage from the capacitive process under high rate. The self‐rearrangement of the carbon structure, induced by continuous discharge and charge, lead to the capacity improvement with cycles. These results demonstrate a new avenue to design advanced anode materials for SIBs.  相似文献   

7.
Potassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g?1 at 100 mA g?1 over 100 cycles and a high rate capability of 158 mAh g?1 at 2000 mA g?1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg?1 and a power density of 920 W kg?1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).  相似文献   

8.
In this study, hierarchically nanoporous pyropolymers (HN‐PPs) including numerous redox‐active heteroatoms are fabricated from polyaniline nanotubes by heating with KOH. In the large operating voltage range 1.0–4.8 V versus Li+/Li, HN‐PPs store amphicharges by a pseudocapacitive manner of Li‐ion (mainly <3.0 V) and electrochemical double layer formation of anion (primarily >3.0 V). Through these surface‐driven charge storage behaviors, HN‐PPs achieve a significantly high specific capacity of ≈460 mA h g?1 at 0.5 A g?1, maintaining specific capacities of 140 mA h g?1 at a high specific current of 30 A g?1 and 305 mA h g?1 after 2000 cycles at 3 A g?1. Furthermore, asymmetric energy storage devices based on HN‐PPs deliver a high specific energy of 265 W h kg?1 and high specific power of 5081 W kg?1 with long‐term cycling performance.  相似文献   

9.
Na‐ion capacitors have attracted extensive interest due to the combination of the merits of high energy density of batteries and high power density as well as long cycle life of capacitors. Here, a novel Na‐ion capacitor, utilizing TiO2@CNT@C nanorods as an intercalation‐type anode and biomass‐derived carbon with high surface area as an ion adsorption cathode in an organic electrolyte, is reported. The advanced architecture of TiO2@CNT@C nanorods, prepared by electrospinning method, demonstrates excellent cyclic stability and outstanding rate capability in half cells. The contribution of extrinsic pseudocapacitance affects the rate capability to a large extent, which is identified by kinetics analysis. A key finding is that ion/electron transfer dynamics of TiO2@CNT@C could be effectively enhanced due to the addition of multiwalled carbon nanotubes. Also, the biomass‐derived carbon with high surface area displays high specific capacity and excellent rate capability. Owing to the merits of structures and excellent performances of both anode and cathode materials, the assembled Na‐ion capacitors provide an exceptionally high energy density (81.2 W h kg?1) and high power density (12 400 W kg?1) within 1.0–4.0 V. Meanwhile, the Na‐ion capacitors achieve 85.3% capacity retention after 5000 cycles tested at 1 A g?1.  相似文献   

10.
Lithium‐sulfur (Li‐S) batteries are considered to be one of the promising next‐generation energy storage systems. Considerable progress has been achieved in sulfur composite cathodes, but high cycling stability and discharging capacity at the expense of volumetric capacity have offset their advantages. Herein, a functional separator is presented by coating cobalt‐embedded nitrogen‐doped porous carbon nanosheets and graphene on one surface of a commercial polypropylene separator. The coating layer not only suppresses the polysulfide shuttle effect through chemical affinity, but also functions as an electrocatalyst to propel catalytic conversion of intercepted polysulfides. The slurry‐bladed carbon nanotubes/sulfur cathode with 90 wt% sulfur deliver high reversible capacity of 1103 mA h g?1 and volumetric capacity of 1062 mA h cm?3 at 0.2 C, and the freestanding carbon nanofibers/sulfur cathode provides a high discharging capacity of 1190 mA h g?1 and volumetric capacity of 1136 mA h cm?3 at high sulfur content of 78 wt% and sulfur loading of 10.5 mg cm?2. The electrochemical performance is comparable with or even superior to those in the state‐of‐the‐art carbon‐based sulfur cathodes. The separator reported in this work holds great promise for the development of high‐energy‐density Li‐S batteries.  相似文献   

11.
Transition metal nitrides are promising energy storage materials in regard to good metallic conductivity and high theoretical specific capacity, but their cycling stability is impeded by the huge volume change caused by the conversion reaction mechanism. Here, a simple strategy to produce an intercalation pseudocapacitive‐type vanadium nitride (VN) by one‐step ammonification of V2C MXene for sodium‐ion batteries is reported. Profiting from a distinctive layered structure pillared by Al atoms in the layer spacing, it delivers a high capacity of 372 mA h g?1 at 50 mA g?1 and a desirable rate performance. More importantly, it shows remarkably long cycling stability over 7500 cycles without capacity attenuation at 500 mA g?1. As expected, it is found that the intercalation pseudocapacitance plays an important role in the excellent performance, by using in situ X‐ray diffraction and ex situ X‐ray absorption structure characterization. Even more remarkable, are the high energy and power density of the sodium‐ion capacitor after coupling with a carbon‐based cathode. The hybrid device possesses an energy density of 78.43 Wh kg?1 at power density of 260 W kg?1. The results clearly show that such a unique‐layered VN with outstanding Na storage capability is an excellent new material for energy storage systems.  相似文献   

12.
The lithium–sulfur (Li–S) battery is considered a promising candidate for the next generation of energy storage system due to its high specific energy density and low cost of raw materials. However, the practical application of Li–S batteries is severely limited by several weaknesses such as the shuttle effect of polysulfides and the insulation of the electrochemical products of sulfur and Li2S/Li2S2. Here, by doping nitrogen and integrating highly dispersed cobalt catalysts, a porous carbon nanocage derived from glucose adsorbed metal–organic framework is developed as the host for a sulfur cathode. This host structure combines the reported positive effects, including high conductivity, high sulfur loading, effective stress release, fast lithium‐ion kinetics, fast interface charge transport, fast redox of Li2Sn, and strong physical/chemical absorption, achieving a long cycle life (86% of capacity retention at 1C within 500 cycles) and high rate performance (600 mAh g?1 at 5C) for a Li–S battery. By combining experiments and density functional theoretical calculations, it is demonstrated that the well‐dispersed cobalt clusters play an important role in greatly improving the diffusion dynamics of lithium, and enhance the absorption and conversion capability of polysulfides in the host structure.  相似文献   

13.
Sodium‐based energy storage technologies are potential candidates for large‐scale grid applications owing to the earth abundance and low cost of sodium resources. Transition metal phosphides, e.g. MoP, are promising anode materials for sodium‐ion storage, while their detailed reaction mechanisms remain largely unexplored. Herein, the sodium‐ion storage mechanism of hexagonal MoP is systematically investigated through experimental characterizations, density functional theory calculations, and kinetics analysis. Briefly, it is found that the naturally covered surface amorphous molybdenum oxides layers on the MoP grains undergo a faradaic redox reaction during sodiation and desodiation, while the inner crystalline MoP remains unchanged. Remarkably, the MoP anode exhibits a pseudocapacitive‐dominated behavior, enabling the high‐rate sodium storage performance. By coupling the pseudocapacitive anode with a high‐rate‐battery‐type Na3V2O2(PO4)2F@rGO cathode, a novel sodium‐ion full cell delivers a high energy density of 157 Wh kg?1 at 97 W kg?1 and even 52 Wh kg?1 at 9316 W kg?1. These findings present the deep understanding of the sodium‐ion storage mechanism in hexagonal MoP and offer a potential route for the design of high‐rate sodium‐ion storage materials and devices.  相似文献   

14.
Potassium‐ion batteries are attracting great interest for emerging large‐scale energy storage owing to their advantages such as low cost and high operational voltage. However, they are still suffering from poor cycling stability and sluggish thermodynamic kinetics, which inhibits their practical applications. Herein, the synthesis of hierarchical K1.39Mn3O6 microspheres as cathode materials for potassium‐ion batteries is reported. Additionally, an effective AlF3 surface coating strategy is applied to further improve the electrochemical performance of K1.39Mn3O6 microspheres. The as‐synthesized AlF3 coated K1.39Mn3O6 microspheres show a high reversible capacity (about 110 mA h g?1 at 10 mA g?1), excellent rate capability, and cycling stability. Galvanostatic intermittent titration technique results demonstrate that the increased diffusion kinetics of potassium‐ion insertion and extraction during discharge and charge processes benefit from both the hierarchical sphere structure and surface modification. Furthermore, ex situ X‐ray diffraction measurements reveal that the irreversible structure evolution can be significantly mitigated via surface modification. This work sheds light on rational design of high‐performance cathode materials for potassium‐ion batteries.  相似文献   

15.
Potassium‐ion batteries (KIBs) are very promising alternatives to lithium‐ion batteries (LIBs) for large‐scale energy storage. However, traditional carbon anode materials usually show poor performance in KIBs due to the large size of K ions. Herein, a carbonization‐etching strategy is reported for making a class of sulfur (S) and oxygen (O) codoped porous hard carbon microspheres (PCMs) material as a novel anode for KIBs through pyrolysis of the polymer microspheres (PMs) composed of a liquid crystal/epoxy monomer/thiol hardener system. The as‐made PCMs possess a porous architecture with a large Brunauer–Emmett–Teller surface area (983.2 m2 g?1), an enlarged interlayer distance (0.393 nm), structural defects induced by the S/O codoping and also amorphous carbon nature. These new features are important for boosting potassium ion storage, allowing the PCMs to deliver a high potassiation capacity of 226.6 mA h g?1 at 50 mA g?1 over 100 cycles and be displaying high stability by showing a potassiation capacity of 108.4 mA h g?1 over 2000 cycles at 1000 mA g?1. The density functional theory calculations demonstrate that S/O codoping not only favors the adsorption of K to the PCMs electrode but also reduces its structural deformation during the potassiation/depotassiation. The present work highlights the important role of hierarchical porosity and S/O codoping in potassium storage.  相似文献   

16.
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications.  相似文献   

17.
Sodium‐ion capacitors (SICs) are emerging energy storage devices with high energy, high power, and durable life. Sn is a promising anode material for lithium storage, but the poor conductivity of the a‐NaSn phase upon sodaition hinders its implementation in SICs. Herein, a superior Sn‐based anode material consisting of plum pudding‐like Co2P/Sn yolk encapsulated with nitrogen‐doped carbon nanobox (Co2P/Sn@NC) for high‐performance SICs is reported. The 8–10 nm metallic nanoparticles produced in situ are uniformly dispersed in the amorphous Sn matrix serving as conductive fillers to facilitate electron transfer in spite of the formation of electrically resistive a‐NaSn phase during cycling. Meanwhile, the carbon shell buffers the large expansion of active Sn and provides a stable electrode–electrolyte interface. Owing to these merits, the yolk–shell Co2P/Sn@NC demonstrates a large capacity of 394 mA h g?1 at 100 mA g?1, high rate capability of 168 mA h g?1 at 5000 mA g?1, and excellent cyclability with 87% capacity retention after 10 000 cycles. By integrating the Co2P/Sn@NC anode with a peanut shell‐derived carbon cathode in the SIC, high energy densities of 112.3 and 43.7 Wh kg?1 at power densities of 100 and 10 000 W kg?1 are achieved.  相似文献   

18.
Capacitive carbons are attractive for energy storage on account of their superior rate and cycling performance over traditional battery materials, but they usually suffer from a far lower volumetric energy density. Starting with expanded graphene, a simple, multifunctional molten sodium amide treatment for the preparation of high‐density graphene with high capacitive performance in both aqueous and lithium battery electrolytes is reported. The molten sodium amide can condense the expanded graphene, lead to nitrogen doping and, what is more important, create moderate in‐plane nanopores on graphene to serve as ion access shortcuts in dense graphene stacks. The resulting high‐density graphene electrode can deliver a volumetric capacitance of 522 F cm?3 in a potassium hydroxide electrolyte; and in a lithium‐ion battery electrolyte, it exhibits a gravimetric and volumetric energy density of 618 W h kg?1 and 740 W h L?1, respectively, and even outperforms commercial LiFePO4.  相似文献   

19.
High energy density at high power density is still a challenge for the current Li‐ion capacitors (LICs) due to the mismatch of charge‐storage capacity and electrode kinetics between capacitor‐type cathode and battery‐type anode. In this work, B and N dual‐doped 3D porous carbon nanofibers are prepared through a facile method as both capacitor‐type cathode and battery‐type anode for LICs. The B and N dual doping has profound effect in tuning the porosity, functional groups, and electrical conductivity for the porous carbon nanofibers. With rational design, the developed B and N dual‐doped carbon nanofibers (BNC) exhibit greatly improved electrochemical performance as both cathode and anode for LICs, which greatly alleviates the mismatch between the two electrodes. For the first time, a 4.5 V “dual carbon” BNC//BNC LIC device is constructed and demonstrated, exhibiting outstanding energy density and power capability compared to previously reported LICs with other configurations. In specific, the present BNC//BNC LIC device can deliver a large energy density of 220 W h kg?1 and a high power density of 22.5 kW kg?1 (at 104 W h kg?1) with reasonably good cycling stability (≈81% retention after 5000 cycles).  相似文献   

20.
The charge storage characteristics of a composite nanoarchitecture with a highly functional 3D morphology are reported. The electrodes are formed by the electropolymerization of aniline monomers into a nanometer‐thick polyaniline (PANI) film that conformally coats graphitic petals (GPs) grown by microwave plasma chemical vapor deposition (MPCVD) on conductive carbon cloth (CC). The hybrid CC/GPs/PANI electrodes yield results near the theoretical maximum capacitance for PANI of 2000 F g?1 (based on PANI mass) and a large area‐normalized specific capacitance of ≈2.6 F cm?2 (equivalent to a volumetric capacitance of ≈230 F cm?3) at a low current density of 1 A g?1 (based on PANI mass). The specific capacitances remain above 1200 F g?1 (based on PANI mass) for currents up to 100 A g?1 with correspondingly high area‐normalized values. The hybrid electrodes also exhibit a high rate capability with an energy density of 110 Wh kg?1 and a maximum power density of 265 kW kg?1 at a current density of 100 A g?1. Long‐term cyclic stability is good (≈7% loss of initial capacitance after 2000 cycles), with coulombic efficiencies >99%. Moreover, prototype all‐solid‐state flexible supercapacitors fabricated from these hybrid electrodes exhibit excellent energy storage performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号