首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
In this paper, a novel freestanding core‐branch negative and positive electrode material through integrating trim aligned Fe2O3 nanoneedle arrays (Fe2O3 NNAs) is first proposed with typical mesoporous structures and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays (NiCo2O4/Ni(OH)2 HNAs) on SiC nanowire (SiC NW) skeletons with outstanding resistance to oxidation and corrosion, good conductivity, and large‐specific surface area. The original built SiC NWs@Fe2O3 NNAs is validated to be a highly capacitive negative electrode (721 F g?1 at 2 A g?1, i.e., 1 F cm?2 at 2.8 mA cm?2), matching well with the similarly constructed SiC NWs@NiCo2O4/Ni(OH)2 HNAs positive electrode (2580 F g?1 at 4 A g?1, i.e., 3.12 F cm?2 at 4.8 mA cm?2). Contributed by the uniquely engineered electrodes, a high‐performance asymmetric supercapacitor (ASC) is developed, which can exhibit a maximum energy density of 103 W h kg?1 at a power density of 3.5 kW kg?1, even when charging the device within 6.5 s, the energy density can still maintain as high as 45 W h kg?1 at 26.1 kW kg?1, and the ASC manifests long cycling lifespan with 86.6% capacitance retention even after 5000 cycles. This pioneering work not only offers an attractive strategy for rational construction of high‐performance SiC NW‐based nanostructured electrodes materials, but also provides a fresh route for manufacturing next‐generation high‐energy storage and conversion systems.  相似文献   

2.
To achieve high‐performance wearable supercapacitors (SCs), a new class of flexible electrodes with favorable architectures allowing large porosity, high conductivity, and good mechanical stability is strongly needed. Here, this study reports the rational design and fabrication of a novel flexible electrode with nanotube‐built multitripod architectures of ternary metal sulfides' composites (FeCo2S4–NiCo2S4) on a silver‐sputtered textile cloth. Silver sputtering is applicable to almost all kinds of textiles, and S2? concentration is optimized during sulfidation process to achieve such architectures and also a complete sulfidation assuring high conductivity. New insights into concentration‐dependent sulfidation mechanism are proposed. The additive‐free FeCo2S4–NiCo2S4 electrode shows a high specific capacitance of 1519 F g?1 at 5 mA cm?2 and superior rate capability (85.1% capacitance retention at 40 mA cm?2). All‐solid‐state SCs employing these advanced electrodes deliver high energy density of 46 W h kg?1 at 1070 W kg?1 as well as achieve remarkable cycling stability retaining 92% of initial capacitance after 3000 cycles at 10 mA cm?2, and outstanding reliability with no capacitance degradation under large twisting. These are attributed to the components' synergy assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. An almost linear increase in capacitance with devices' area indicates possibility to meet various energy output requirements. This work provides a general, low‐cost route to wearable power sources.  相似文献   

3.
A facile two‐step strategy is developed to design the large‐scale synthesis of hierarchical, unique porous architecture of ternary metal hydroxide nanowires grown on porous 3D Ni foam and subsequent effective sulfurization. The hierarchical Zn–Co–S nanowires (NWs) arrays are directly employed as an electrode for supercapacitors application. The as‐synthesized Zn–Co–S NWs deliver an ultrahigh areal capacity of 0.9 mA h cm?2 (specific capacity of 366.7 mA h g?1) at a current density of 3 mA cm?2, with an exceptional rate capability (≈227.6 mA h g?1 at a very high current density of 40 mA cm?2) and outstanding cycling stability (≈93.2% of capacity retention after 10 000 cycles). Most significantly, the assembled Zn–Co–S NWs//Fe2O3@reduced graphene oxide asymmetric supercapacitors with a wide operating potential window of ≈1.6 V yield an ultrahigh volumetric capacity of ≈1.98 mA h cm?3 at a current density of 3 mA cm?2, excellent energy density of ≈81.6 W h kg?1 at a power density of ≈559.2 W kg?1, and exceptional cycling performance (≈92.1% of capacity retention after 10 000 cycles). This general strategy provides an alternative to design the other ternary metal sulfides, making it facile, free‐standing, binder‐free, and cost‐effective ternary metal sulfide‐based electrodes for large‐scale applications in modern electronics.  相似文献   

4.
Developing advanced supercapacitors with both high areal and volumetric energy densities remains challenging. In this work, self‐supported, compact carbon composite electrodes are designed with tunable thickness using 3D printing technology for high‐energy‐density supercapacitors. The 3D carbon composite electrodes are composed of the closely stacked and aligned active carbon/carbon nanotube/reduced graphene oxide (AC/CNT/rGO) composite filaments. The AC microparticles are uniformly embedded in the wrinkled CNT/rGO conductive networks without using polymer binders, which contributes to the formation of abundant open and hierarchical pores. The 3D‐printed ultrathick AC/CNT/rGO composite electrode (ten layers) features high areal and volumetric mass loadings of 56.9 mg cm?2 and 256.3 mg cm?3, respectively. The symmetric cell assembled with the 3D‐printed thin GO separator and ultrathick AC/CNT/rGO electrodes can possess both high areal and volumetric capacitances of 4.56 F cm?2 and 10.28 F cm?3, respectively. Correspondingly, the assembled ultrathick and compact symmetric cell achieves high areal and volumetric energy densities of 0.63 mWh cm?2 and 1.43 mWh cm?3, respectively. The all‐component extrusion‐based 3D printing offers a promising strategy for the fabrication of multiscale and multidimensional structures of various high‐energy‐density electrochemical energy storage devices.  相似文献   

5.
Aqueous asymmetric supercapacitors (ASCs) may offer comparable or higher energy density than electric double‐layer capacitors (EDLCs) based on organic electrolytes. As such, ASCs may be more suitable for integration into smart textiles, where the use of flammable organic solvents is not acceptable. However, reported ASC devices typically suffer from poor rate capability and low areal loadings. This study demonstrates the development of nitrogen‐doped carbon (N‐C) nanowire/metal oxide (Fe2O3 and MnO2) nanocomposite electrodes directly produced on the internal surface of a conductive fabric for use as high‐rate electrodes for solid‐state ASCs. The N‐C nanowires provide fast and efficient pathways for electrons, while short diffusion paths within nanosized metal oxides enable fast ion transport, leading to greatly enhanced performance at high rates. The porous structure of the fabric enables high areal capacitance loading in each electrode (≈150 mF cm?2). Both electrodes show high specific capacitance of ≈180 F g?1 (Fe2O3) and ≈250 F g?1 (MnO2) and excellent rate capability. Solid‐state ASCs assembled by using an aqueous gel electrolyte operate at 1.6 V and deliver over 60 mF cm?2 during ≈50 s charging/discharging time and over 30 mF cm?2 for ≈5 s discharge.  相似文献   

6.
Vanadium pentoxide–reduced graphene oxide (rGO) free‐standing electrodes are used as electrodes for supercapacitor applications, eliminating the need for current collectors or additives and reducing resistance (sheet resistance 29.1 Ω □?1). The effective exfoliation of rGO allows improved electrolyte ions interaction, achieving high areal capacitance (511.7 mF cm?2) coupled with high mass loadings. A fabricated asymmetric flexible device based on rGO/V2O5‐rGO (VGO) consists of approximately 20 mg of active mass and still delivers a low equivalent series resistance (ESR) of 3.36 Ω with excellent cycling stability. A prototype unit of the assembled device with organic electrolyte is shown to light up eight commercial light‐emitting diode bulbs.  相似文献   

7.
Advanced 2D materials have spurred great interest as a new paradigm in pursuing improved energy storage performance. Herein, for the first time, antimonene is utilized as an effective active component for constructing highly deformable and editable freestanding film electrodes, as the basis of a supercapacitor with record‐breaking electrode performance. The insertion of antimonene is able to improve the environmental stability of the antimonene/MXene composite electrode and remarkably enhance the energy storage capability in both protic and neutral electrolytes. Notably, an ultrahigh specific volumetric capacitance of 4255 F cm?3 is achieved by the electrode tested in a1 m H2SO4 electrolyte, which represents the state‐of‐the‐art value reported to date for supercapacitor electrodes based on MXenes. The flexible supercapacitors constructed by the composite electrode, also demonstrate highly competitive energy and power densities: 459.75 mWh cm?3 and 3.12 W cm?3 for the asymmetrical one with a much widened potential window of 2 V in neutral electrolyte; 112.52 mWh cm?3 and 1 W cm?3 for the symmetrical configuration with an outstanding capacitance of 1265 F cm?3 in acidic media. This work sheds new light on the fabrication of high‐performance supercapacitor electrodes with functionalities in different electrolyte media and various device configurations.  相似文献   

8.
High‐performance, breathable, conductive, and flexible polypyrrole (PPy) coated paper electrodes are prepared by an interfacial polymerization method using air‐laid paper as a substrate. Owing to the synergistic effect of superior electrical conductivity, high wettability, and the porous architecture, the prepared electrode not only shows an outstanding specific capacitance and rate abilities (3100 and 2579 mF cm?2 at 1 and 20 mA cm?2 for a PPy coated paper electrode), but also exhibits excellent flexibility, wearability, and breathability. Based on these superior features, an all‐solid‐state supercapacitor assembled with the PPy coated paper electrodes shows an outstanding energy density of 62.4 µW h cm?2, remarkable air permeability and excellent flexibility to sustain various deformations. Furthermore, large‐scale fabrication of conductive flexible paper electrode can be easily achieved through this method. Therefore, this work offers a new vision for flexible energy storage.  相似文献   

9.
A three‐component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ‐MnO2 nanoflowers anchored onto carbon nanotubes (γ‐MnO2/CNT) as spacers for graphene nanosheets (GNs). The three‐component, composite electrode doubles the specific capacitance with respect to GN‐only electrodes, giving the highest‐reported specific capacitance (308 F g?1) for symmetric supercapacitors containing MnO2 and GNs using a two‐electrode configuration, at a scan rate of 20 mV s?1. A maximum energy density of 43 W h kg?1 is obtained for our symmetric supercapacitors at a constant discharge‐current density of 2.5 A g?1 using GN–(γ‐MnO2/CNT)‐nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles.  相似文献   

10.
Achieving a high areal capacity is essential for the transfer of outstanding laboratory electrode results to commercial applications and also to ensure there exists a capacity matched cathode and anode for a properly tuned battery. Despite intensive efforts, most electrode materials exhibit areal capacities lower than that of the graphite anodes (4 mA h cm?2). An effective and low‐cost approach is reported to attain a high areal capacity via an intense densification by compacting a porous carbon nanotube sponge grafted with Co3O4 nanoparticles. The hybrid sponge can be compacted to a large degree (up to a tenfold densification) while still keeping its structural integrity and the 3D porous network. This method allows achieving a mass loading of up ?to 14.3 mg cm?2 and an areal capacity of 12 mA h cm?2 (at a current density of 200 mA g?1) together with a gravimetric capacity of >800 mA h g?1. This densification by compaction approach offers an effective and low‐cost strategy to develop high mass loading and areal capacity electrodes for practical energy storage systems.  相似文献   

11.
Vanadium pentoxide (V2O5) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V2O5 greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)‐V2O5 nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT‐VNW composite paper electrode exhibits a power density of 5.26 kW Kg?1 and an energy density of 46.3 Wh Kg?1. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg?1 and an energy density of 65.9 Wh Kg?1. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors.  相似文献   

12.
Here, a simple active materials synthesis method is presented that boosts electrode performance and utilizes a facile screen‐printing technique to prepare scalable patterned flexible supercapacitors based on manganese hexacyanoferrate‐manganese oxide and electrochemically reduced graphene oxide electrode materials (MnHCF‐MnOx/ErGO). A very simple in situ self‐reaction method is developed to introduce MnOx pseudocapacitor material into the MnHCF system by using NH4F. This MnHCF‐MnOx electrode materials can deliver excellent capacitance of 467 F g?1 at a current density of 1 A g?1, which is a 2.4 times capacitance increase compared to MnHCF. In addition a printed, patterned, flexible MnHCF‐MnOx/ErGO supercapacitor is fabricated, showing a remarkable areal capacitance of 16.8 mF cm?2 and considerable energy and power density of 0.5 mWh cm?2 and 0.0023 mW cm?2, respectively. Furthermore, the printed patterned flexible supercapacitors also exhibit exceptional flexibility, and the capacitance remains stable, even while bending to various angles (60°, 90°, and 180°) and for 100 cycles. The flexible supercapacitor arrays integrated by multiple prepared single supercapacitors can power various LEDs even in the bent states. This approach offers promising opportunities for the development of printable energy storage materials and devices with high energy density, large scalability, and excellent flexibility.  相似文献   

13.
In this work, a simple lignin‐based laser lithography technique is developed and used to fabricate on‐chip microsupercapacitors (MSCs) using 3D graphene electrodes. Specifically, lignin films are transformed directly into 3D laser‐scribed graphene (LSG) electrodes by a simple one‐step CO2 laser irradiation. This step is followed by a water lift‐off process to remove unexposed lignin, resulting in 3D graphene with the designed electrode patterns. The resulting LSG electrodes are hierarchically porous, electrically conductive (conductivity is up to 66.2 S cm?1), and have a high specific surface area (338.3 m2 g?1). These characteristics mean that such electrodes can be used directly as MSC electrodes without the need for binders and current collectors. The MSCs fabricated using lignin laser lithography exhibit good electrochemical performances, namely, high areal capacitance (25.1 mF cm?2), high volumetric energy density (≈1 mWh cm?3), and high volumetric power density (≈2 W cm?3). The versatility of lignin laser lithography opens up the opportunity in applications such as on‐chip microsupercapacitors, sensors, and flexible electronics at large‐scale production.  相似文献   

14.
To fabricate battery‐like supercapacitors with high power and energy densities, big capacitances, as well as long‐term capacitance retention, vertically aligned carbon nanofibers (CNFs) grown on boron doped diamond (BDD) films are employed as the capacitor electrodes. They possess large surface areas, high conductivity, high stability, and importantly are free of binder. The large surface areas result from their porous structures. The containment of graphene layers and copper metal catalysts inside CNFs leads to their high conductivity. Both electrical double layer capacitors (EDLCs) in inert solutions and pseudocapacitors (PCs) using Fe(CN)63?/4? redox‐active electrolytes are constructed with three‐ and two‐electrode systems. The assembled two‐electrode symmetrical supercapacitor devices exhibit capacitances of 30 and 48 mF cm?2 at 10 mV s?1 for EDLC and PC devices, respectively. They remain constant even after 10 000 charging/discharging cycles. The power densities are 27.3 and 25.3 kW kg?1 for EDLC and PC devices, together with their energy densities of 22.9 and 44.1 W h kg?1, respectively. The performance of these devices is superior to most of the reported supercapacitors and batteries. Vertically aligned CNF/BDD hybrid films are thus useful to construct high‐performance battery‐like and industry‐orientated supercapacitors for future power devices.  相似文献   

15.
Metal–organic frameworks (MOFs) with intrinsically porous structures are promising candidates for energy storage, however, their low electrical conductivity limits their electrochemical energy storage applications. Herein, the hybrid architecture of intrinsically conductive Cu‐MOF nanowire arrays on self‐supported polypyrrole (PPy) membrane is reported for integrated flexible supercapacitor (SC) electrodes without any inactive additives, binders, or substrates involved. The conductive Cu‐MOFs nanowire arrays afford high conductivity and a sufficiently active surface area for the accessibility of electrolyte, whereas the PPy membrane provides decent mechanical flexibility, efficient charge transfer skeleton, and extra capacitance. The all‐solid‐state flexible SC using integrated hybrid electrode demonstrates an exceptional areal capacitance of 252.1 mF cm?2, an energy density of 22.4 µWh cm?2, and a power density of 1.1 mW cm?2, accompanied by an excellent cycle capability and mechanical flexibility over a wide range of working temperatures. This work not only presents a robust and flexible electrode for wide temperature range operating SC but also offers valuable concepts with regards to designing MOF‐based hybrid materials for energy storage and conversion systems.  相似文献   

16.
To push the energy density limit of supercapacitors, a new class of electrode materials with favorable architectures is strongly needed. Binary metal sulfides hold great promise as an electrode material for high‐performance energy storage devices because they offer higher electrochemical activity and higher capacity than mono‐metal sulfides. Here, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen‐doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors. A facile two‐step method is developed for growth of NiCo2S4 nanosheets on NCF with robust adhesion, involving the growth of Ni‐Co precursor and subsequent conversion into NiCo2S4 nanosheets through sulfidation process. Benefiting from the compositional features and 3D electrode architectures, the NiCo2S4/NCF electrode exhibits greatly improved electrochemical performance with ultrahigh capacitance (877 F g?1 at 20 A g?1) and excellent cycling stability. Moreover, a binder‐free asymmetric supercapacitor device is also fabricated by using NiCo2S4/NCF as the positive electrode and ordered mesoporous carbon (OMC)/NCF as the negative electrode; this demonstrates high energy density (≈45.5 Wh kg?1 at 512 W kg?1).  相似文献   

17.
The fabrication of fully printable, flexible micro‐supercapacitors (MSCs) with high energy and power density remains a significant technological hurdle. To overcome this grand challenge, the 2D material MXene has garnered significant attention for its application, among others, as a printable electrode material for high performing electrochemical energy storage devices. Herein, a facile and in situ process is proposed to homogeneously anchor hydrous ruthenium oxide (RuO2) nanoparticles on Ti3C2Tx MXene nanosheets. The resulting RuO2@MXene nanosheets can associate with silver nanowires (AgNWs) to serve as a printable electrode with micrometer‐scale resolution for high performing, fully printed MSCs. In this printed nanocomposite electrode, the RuO2 nanoparticles contribute high pseudocapacitance while preventing the MXene nanosheets from restacking, ensuring an effective ion highway for electrolyte ions. The AgNWs coordinate with the RuO2@MXene to guarantee the rheological property of the electrode ink, and provide a highly conductive network architecture for rapid charge transport. As a result, MSCs printed from the nanocomposite inks demonstrate volumetric capacitances of 864.2 F cm?3 at 1 mV s?1, long‐term cycling performance (90% retention after 10 000 cycles), good rate capability (304.0 F cm?3 at 2000 mV s?1), outstanding flexibility, remarkable energy (13.5 mWh cm?3) and power density (48.5 W cm?3).  相似文献   

18.
The energy densities of most supercapacitors (SCs) are low, hindering their practical applications. To construct SCs with ultrahigh energy densities, a porous titanium carbide (TiC)/boron‐doped diamond (BDD) composite electrode is synthesized on a titanium plate that is pretreated using a plasma electrolytic oxidation (PEO) technique. The porous and nanometer‐thick TiO2 layer formed during PEO process prevents the formation of brittle titanium hydride and enhances the BDD growth during chemical vapor deposition processes. Meanwhile, the in situ conversion of TiO2 into TiC is achieved. Combination of this capacitor electrode with soluble redox electrolytes leads to the fabrication of high‐performance SCs in both aqueous and organic solutions. In 0.05 m Fe(CN)63?/4? + 1 m Na2SO4 aqueous solution, the capacitance is as high as 46.3 mF cm?2 at a current density of 1 mA cm?2; this capacitance remains 92% of its initial value even after 10 000 charge/discharge cycles; the energy density is up to 47.4 Wh kg?1 at a power density of 2236 W kg?1. The performance of constructed SCs is superior to most available SCs and some electrochemical energy storage devices like batteries. Such a porous capacitor electrode is thus promising for the construction of high‐performance SCs for practical applications.  相似文献   

19.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

20.
Recent supercapacitors show a high power density with long‐term cycle life time in energy‐powering applications. A supercapacitor based on a single metal electrode accompanying multivalent cations, multiple charging/discharging kinetics, and high electrical conductivity is a promising energy‐storing system that replaces conventionally used oxide and sulfide materials. Here, a hierarchically nanostructured 2D‐Zn metal electrode‐ion supercapacitor (ZIC) is reported which significantly enhances the ion diffusion ability and overall energy storage performance. Those nanostructures can also be successfully plated on various flat‐type and fiber‐type current collectors by a controlled electroplating method. The ZIC exhibits excellent pseudocapacitive performance with a high energy density of 208 W h kg?1 and a power density from 500 W kg?1, which are significantly higher than those of previously reported supercapacitors with oxide and sulfide materials. Furthermore, the fiber‐type ZIC also shows high energy‐storing performance, outstanding mechanical flexibility, and waterproof characteristics, without any significant capacitance degradation during bending tests. These results highlight the promising possibility of nanostructured 2D Zn metal electrodes with the controlled electroplating method for future energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号