首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the participationof the 150-kDa oxygen-regulated protein (ORP150) in protein transport,its function in Madin-Darby canine kidney (MDCK) cells was studied.Exposure of MDCK cells to hypoxia resulted in an increase of ORP150antigen and increased binding of ORP150 to GP80/clusterin (80-kDaglycoprotein), a natural secretory protein in this cell line. In ORP150antisense transformant MDCK cells, GP80 was retained within theendoplasmic reticulum after exposure to hypoxia. Metabolic labelingshowed the delay of GP80 maturation in antisense transformants inhypoxia, whereas its matured form was detected in wild-type cells,indicating a role of ORP150 in protein transport, especially inhypoxia. The affinity chromatographic analysis of ORP150 suggested itsability to bind to ATP-agarose. Furthermore, the ATP hydrolysisanalysis showed that ORP150 can release GP80 at a lower ATPconcentration. These data indicate that ORP150 may function as a uniquemolecular chaperone in renal epithelial cells by facilitating proteintransport/maturation in an environment where less ATP is accessible.

  相似文献   

2.
Oxidized LDLs (oxLDLs) induce apoptosis, which contributes to the pathogenesis of atherosclerosis. The 150 kDa oxygen-regulated protein (ORP150), an endoplasmic reticulum (ER)-resident chaperone, is upregulated by hypoxia and prevents ischemia-induced cell death. The aim of this work was to investigate whether and how ORP150 can prevent apoptosis induced by oxLDLs in vascular cells. OxLDLs induced ORP150 expression in the ER of human microvascular endothelial cell line (HMEC-1). ORP150 expression was blocked by antioxidants, by the permeant calcium chelator BAPTA-AM, and by inhibitors of the inositol-1,4,5 trisphosphate (IP3) receptors, 2-aminoethyl diphenylborinate (2-APB) and xestospongin C. ORP150 silencing by siRNA-enhanced oxLDL-induced apoptosis, while forced ORP150 expression increased the resistance of cells via an inhibition of the oxLDL-induced calcium rise, and of subsequent calpain activation, cytochrome c release, caspase 3 activation and apoptosis. A similar protective effect was achieved by BAPTA-AM, 2-APB and xestospongin C. Altogether, these data indicate that (i)ORP150 inhibits oxLDL-induced apoptosis by blocking calcium signaling and subsequent apoptosis, (ii)calcium released from ER stores through IP3 channels is involved in the oxLDL-induced calcium rise and apoptosis, and is inhibited by ORP150. Finally, ORP150 is expressed in advanced atherosclerotic lesions, where it may locally participate to reduce the apoptotic effect of oxLDLs and the subsequent risk of plaque rupture.  相似文献   

3.
在前期研究中发现,氧调节蛋白150(ORP150)是与肝细胞癌相关的糖蛋白.进一步研究了ORP150的表达水平与肝细胞癌的相关性.免疫印迹、细胞免疫化学和定量PCR分别在蛋白质水平和mRNA水平检测了ORP150的表达.运用RNA干扰技术检测了其对凋亡和肝细胞癌侵袭性的影响.发现:无论是蛋白质水平还是mRNA水平,与正常肝细胞相比,ORP150在肝细胞癌中表达明显上调;经RNA干扰后,肝细胞癌的凋亡明显增加,但肿瘤细胞的侵袭性无改变.肝细胞癌中,ORP150表达上调,它可能抑制肿瘤细胞的凋亡而促进其生长.ORP150有可能成为肝细胞癌的治疗靶点.  相似文献   

4.
Apoptosis is essential for the regulation of cellular homeostasis in the placenta and is also involved in the pathophysiology of pregnancy-related diseases such as pre-eclampsia and intrauterine growth restriction (IUGR). Syncytin-1, a fusiogenic glycoprotein of endogenous-retroviral origin expressed in human trophoblasts, facilitates placental syncytium formation and is found reduced in pre-eclamptic placentas. We focus here on the mitochondrial apoptotic pathway and investigate whether the overexpression of syncytin-1 in HEK293-52 (human embryonic kidney cells) and CHO-52 cells influences the apoptotic response to the mitochondrial inhibitor antimycin A (AA). After the induction of apoptosis by 5 microM AA and incubation for up to 36 h in the absence of serum, the mean apoptotic rate was reduced by 15-30% in syncytin-1 transfected cells compared with mock-transfectants. After 12 h of challenge with AA we found lower cytochrome c levels in the cytoplasmic protein fraction and higher amounts in the mitochondrial fraction in syncytin-1 transfectants compared with mock-transfectants. We observed a decreased Mitotracker Red staining of mitochondria following AA challenge for 24 h in mock-treated CHO cells, in particular, compared with syncytin-1 transfectants. Moreover, we found a reduced activation of caspase 9 in syncytin-1 transfected HEK293-52 cells after 48 h of apoptotic challenge compared to mock-transfectants. However, a high expression of anti-apoptotic Bcl-x(L) was found in both cell types. Using syncytin-1 transfected HEK293-52 cells and CHO-52 cells, we provide initial evidence that syncytin-1 may exert its anti-apoptotic function at the mitochondrial level. A reduced release of cytochrome c followed by a diminished activation of caspase 9 is a possible mechanism.  相似文献   

5.
6.
MCF-7 and ZR-75 breast cancer cells infected with an adenovirus constitutively expressing high levels of cyclin D1 demonstrated widespread mitochondrial translocation of Bax and cytochrome c release that was approximately doubled after the addition of all-trans retinoic acid (RA) or Bcl-2 antisense oligonucleotide. By comparison, the percentage of cells in Lac Z virus-infected cultures containing translocated Bax and cytoplasmic cytochrome c was markedly less even after RA treatment. Despite this, RA-treated Lac Z and untreated cyclin D1 virus-infected cultures contained similarly low proportions of cells with active caspase or cells that were permeable to propidium iodide. Bax activation was p53-dependent and accompanied by arrest in G(2) phase. Although constitutive Bcl-2 expression prevented Bax activation, it did not alter cyclin D1-induced cell cycle arrest, illustrating the independence of these events. Both RA and antisense Bcl-2 oligonucleotide decreased Bcl-2 protein levels and markedly increased caspase activity and apoptosis in cyclin D1-infected cells. Thus amplified cyclin D1 expression initiates an apoptotic signal inhibited by different levels of cellular Bcl-2 at two points. Whereas high cellular levels of Bcl-2 prevent mitochondrial Bax translocation, lower levels can prevent apoptosis by inhibition of caspase activation.  相似文献   

7.
Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.  相似文献   

8.
Correct protein folding is an important factor, for the translocation of newly synthesised proteins to specific subcellular compartments, extracellular matrix or to biological fluids. This process is regulated by a group of specific proteins, referred to as chaperones. Many stress conditions, such as oxygen or glucose deprivation, slow down the folding process and cause accumulation of unfolded/misfolded proteins in the cell. Molecular chaperones are induced in these conditions; with some named as oxygen-regulated proteins (ORPs). These bind to unfolded / misfolded proteins to facilitate correct assembly. ORP 150 is the subject of this study. Hypoxia results in an enhancement of ORP 150 expression in several tumour cell lines cultured in vitro. HeLa cells grown in hypoxic conditions (despite an intensive expression of ORP 150) demonstrate higher rates of apoptosis in comparison to those cultured in normoxic conditions. Furthermore, the inhibition of ORP 150 synthesis by transfection of these cells with a specific siRNA resulted in an intensification of apoptosis, as indicated by specific markers of this process; the enhancement of poly ADP-ribose protein cleavage and the increase in Bim protein expression. We conclude from our study that the increase in ORP 150 synthesis protects the cells against the proapoptotic effect of hypoxia.  相似文献   

9.
The death receptor CD95 (APO-1/Fas), the anticancer drug etoposide, and gamma-radiation induce apoptosis in the human T cell line Jurkat. Variant clones selected for resistance to CD95-induced apoptosis proved cross-resistant to etoposide- and radiation-induced apoptosis, suggesting that the apoptosis pathways induced by these distinct stimuli have critical component(s) in common. The pathways do not converge at the level of CD95 ligation or caspase-8 signaling. Whereas caspase-8 function was required for CD95-mediated cytochrome c release, effector caspase activation, and apoptosis, these responses were unaffected in etoposide-treated and irradiated cells when caspase-8 was inhibited by FLIPL. Both effector caspase processing and cytochrome c release were inhibited in the resistant variant cells as well as in Bcl-2 transfectants, suggesting that, in Jurkat cells, the apoptosis signaling pathways activated by CD95, etoposide, and gamma-radiation are under common mitochondrial control. All three stimuli induced ceramide production in wild-type cells, but not in resistant variant cells. Exogenous ceramide bypassed apoptosis resistance in the variant cells, but not in Bcl-2-transfected cells, suggesting that apoptosis signaling induced by CD95, etoposide, and gamma-radiation is subject to common regulation at a level different from that targeted by Bcl-2.  相似文献   

10.
ORP150 protects against hypoxia/ischemia-induced neuronal death   总被引:16,自引:0,他引:16  
Oxygen-regulated protein 150 kD (ORP150) is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. Although ORP150 was sparingly upregulated in neurons from human brain undergoing ischemic stress, there was robust induction in astrocytes. Cultured neurons overexpressing ORP150 were resistant to hypoxemic stress, whereas astrocytes with inhibited ORP150 expression were more vulnerable. Mice with targeted neuronal overexpression of ORP150 had smaller strokes compared with controls. Neurons with increased ORP150 demonstrated suppressed caspase-3-like activity and enhanced brain-derived neurotrophic factor (BDNF) under hypoxia signaling. These data indicate that ORP150 is an integral participant in ischemic cytoprotective pathways.  相似文献   

11.
Enhanced cell survival and resistance to apoptosis during thermotolerance correlates with an increased expression of heat shock proteins (Hsps). Here we present additional evidence in support of the hypothesis that the induction of Hsp27 and Hsp72 during acquired thermotolerance in Jurkat T-lymphocytes prevents apoptosis. In thermotolerant cells, Hsp27 was shown to associate with the mitochondrial fraction, and inhibition of Hsp27 induction during thermotolerance in cells transfected with hsp27 antisense potentiated mitochondrial cytochrome c release after exposure to various apoptotic stimuli, despite the presence of elevated levels of Hsp72. Caspase activation and apoptosis were inhibited under these conditions. In vitro studies revealed that recombinant Hsp72 more efficiently blocked cytochrome c-mediated caspase activation than did recombinant Hsp27. A model is presented for the inhibition of apoptosis during thermotolerance in which Hsp27 preferentially blocks mitochondrial cytochrome c release, whereas Hsp72 interferes with apoptosomal caspase activation.  相似文献   

12.
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague–Dawley rats were administered parecoxib (10 or 30 mg kg?1, IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.  相似文献   

13.
The HAP1 protein (also known as APE/Ref-1) is a bifunctional human nuclear enzyme required for repair of apurinic/apyrimidinic sites in DNA and reactivation of oxidized proto-oncogene products. To gain insight into the biological roles of HAP1, the effect of expressing antisense HAP1 RNA in HeLa cells was determined. The constructs for antisense RNA expression consisted of either a full-length HAP1 cDNA or a genomic DNA fragment cloned downstream of the CMV promoter in pcDNAneo. Stable HeLa cell transfectants expressing HAP1 antisense RNA were found to express greatly reduced levels of the HAP1 protein compared to equivalent sense orientation and vector-only control transfectants. The antisense HAP1 transfectants exhibited a normal growth rate, cell morphology and plating efficiency, but were hypersensitive to killing by a wide range of DNA damaging agents, including methyl methanesulphonate, hydrogen peroxide, menadione, and paraquat. However, survival after UV irradiation was unchanged. The antisense transfectants were strikingly sensitive to changes in oxygen tension, exhibiting increased killing compared to controls following exposure to both hypoxia (1% oxygen) and hyperoxia (100% oxygen). Consistent with a requirement for HAP1 in protection against hypoxic stress, expression of the HAP1 protein was found to be induced in a time-dependent manner in human cells during growth under 1% oxygen. The possible involvement of a depletion of cellular glutathione being linked to the hypoxic stress-sensitive phenotype of the antisense HAP1 transfectants came from the finding that they also exhibited hypersensitivity to buthionine sulphoximine, an inhibitor of glutathione biosynthesis. We conclude that the HAP1 protein is a key factor in cellular protection against a wide variety of cellular stresses, including DNA damage and a change in oxygen tension.  相似文献   

14.
Brain ischemia has major consequences leading to the apoptosis of astrocytes and neurons. Glucose-regulated protein 78 (GRP78) known for its role in endoplasmic reticulum stress alleviation was discovered on several cell surfaces acting as a receptor for signaling pathways. We have previously described peptides that bind cell surface GRP78 on endothelial cells to induce angiogenesis. We have also reported that ADoPep1 binds cardiomyocytes to prevent apoptosis of ischemic heart cells. In this study we describe the effect of hypoxia on astrocytes and neurons cell surface GRP78. Under hypoxic conditions, there was an increase of more than fivefold in GRP78 on cell surface of neurons while astrocytes were not affected. The addition of the GRP78 binding peptide, ADoPep1, to neurons decreased the percentage of GRP78 positive cells and did not change the percent of astrocytes. However, a significant increase in early and late apoptosis of both astrocytes and neurons under hypoxia was attenuated in the presence of ADoPep1. Intravitreal administration of ADoPep1 to mice in a model of optic nerve crush significantly reduced retinal cell loss after 21 days compared to the crush-damaged eyes without treatment or by control saline vehicle injection. Histological staining demonstrated reduced GRP78 after ADoPep1 treatment. The mechanism of peptide neuroprotection was demonstrated by the inhibition of hypoxia induced caspase 3/7 activity, cytochrome c release and p38 phosphorylation. This study is the first report on hypoxic neuronal and astrocyte cell surface GRP78 and suggests a potential therapeutic target for neuroprotection.  相似文献   

15.
The tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL or Apo2L) and its receptors are members of the tumor necrosis factor superfamily. TRAIL triggers apoptosis by binding to its two proapoptotic receptors DR4 and DR5, a process which is negatively regulated by binding of TRAIL to its two decoy receptors TRID and TRUNDD. Here, we show that TRAIL effectively induces apoptosis in H460 human non-small-cell lung carcinoma cells via cleavage of caspases 8, 9, 7, 3, and BID, release of cytochrome c from the mitochondria, and cleavage of poly (ADP-ribose) polymerase (PARP). However, overexpression of Bcl2 blocked TRAIL-induced apoptosis in H460 cells, which correlated with the Bcl2 protein levels. Importantly, the release of cytochrome c and cleavage of caspase 7 triggered by TRAIL were considerably blocked in Bcl2 overexpressing cells as compared to vector control cells. Moreover, inhibition of TRAIL-mediated cytochrome c release and caspase 7 activation by Bcl2 correlated with the inability of PARP to be cleaved and the inability of the Bcl2 transfectants to undergo apoptosis. Thus, these results suggest that Bcl2 can serve an anti-apoptotic function during TRAIL-dependent apoptosis by inhibiting the release of cytochrome c and activation of caspase 7, thereby blocking caspase 7-dependent cleavage of cellular substrates.  相似文献   

16.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   

17.
Ischemic stress of cells within solid tumors arises from inadequate perfusion of regions of the tumor and results in microenvironments which are hypoxic and deficient in nutrient delivery and waste product removal. Stressed cells within these microenvironments show growth inhibition and synthesize unique sets of proteins referred to as glucose and oxygen regulated proteins (GRPs and ORPs respectively). The commonality of proteins induced by glucose-starvation and hypoxia has not been proven. To this end, ORPs were induced in Chinese hamster ovary cells in the presence of high glucose concentration in the media and ORP 80 isolated from two dimension gels. Eleven tryptic peptides of the 80 kDa ORP were sequenced and found to be identical to GRP 78 sequences. The data demonstrate that GRP 78 and ORP 80 have the same primary amino acid sequence and suggest that glucose-starvation and hypoxia can induce the same cellular responses.  相似文献   

18.
We previously demonstrated that cysteine-rich with EGF-like domains 2 (CRELD2), a novel ER stress-inducible factor, is a secretory glycoprotein; however, the stimuli that induce CRELD2 secretion have not yet been characterized. In this study, we found that the perturbation of intravesicular acidification of cytoplasmic organelles in HEK293 cells stably expressing wild-type (wt) CRELD2 induced its secretion. In particular, Concanamycin A (CMA) and Bafilomycin A1 (Baf), inhibitors of vacuolar ATPase (V-ATPase), increased the secretion of CRELD2 without relying on its C-terminal structure. The levels of secretion of EGFP-fused CRELD2 (SP-EGFP-CRELD2), which consists of EGFP following the putative signal peptide (SP) sequence of CRELD2, from COS7 cells transiently transfected with this construct were also increased after each of the treatments, but their intracellular localization was barely affected by CMA treatment. Transient overexpression of 78-kDa glucose-regulated protein (GRP78) and protein disulfide isomerase (PDI) also increased the secretion of CRELD2 from HEK293 cells expressing wt CRELD2, whereas the perturbation of intravesicular acidification did not alter the expression of GRP78 and PDI in the HEK293 cells. We further studied the roles of intracellular calcium ions and the Golgi apparatus in the secretion of CRELD2 from HEK293 cells in which intravesicular acidification was perturbed. The treatment with calcium ionophore increased the secretion of wt CRELD2, while that with BAPTA-AM, an intracellular calcium chelator, did not reduce the CMA-induced CRELD2 secretion. By contrast, treatment with brefeldin A (BFA), which inhibits the transportation of proteins from the ER to the Golgi apparatus, almost completely abolished the secretion of wt CRELD2 from the HEK293 cells. In conclusion, we demonstrated that the intravesicular acidification by V-ATPase regulates the secretion of CRELD2 without relying on the balance of intracellular calcium ions and the expression of ER chaperones such as GRP78 and PDI. These findings concerning the role of V-ATPases in modulating the secretion of CRELD2, a novel ER stress-inducible secretory factor, may provide new insights into the prevention and treatment of certain ER stress-related diseases.  相似文献   

19.
Myocilin, a causative gene for open angle glaucoma, encodes a secreted glycoprotein with poorly understood functions. To gain insight into its functions, we produced a stably transfected HEK293 cell line expressing myocilin under an inducible promoter and compared gene expression profiles between myocilin-expressing and vector control cell lines by a microarray analysis. A significant fraction of differentially expressed genes in myocilin-expressing cells was associated with cell growth and cell death, suggesting that myocilin may have a role in the regulation of cell growth and survival. Increased proliferation of myocilin-expressing cells was demonstrated by the WST-1 proliferation assay, direct cell counting, and immunostaining with antibodies against Ki-67, a cellular proliferation marker. Myocilin-containing conditioned medium also increased proliferation of unmodified HEK293 cells. Myocilin-expressing cells were more resistant to serum starvation-induced apoptosis than control cells. TUNEL-positive apoptotic cells were dramatically decreased, and two apoptotic marker proteins, cleaved caspase 7 and cleaved poly(ADP-ribose) polymerase, were significantly reduced in myocilin-expressing cells as compared with control cells under apoptotic conditions. In addition, myocilin-deficient mesenchymal stem cells exhibited reduced proliferation and enhanced susceptibility to serum starvation-induced apoptosis as compared with wild-type mesenchymal stem cells. Phosphorylation of ERK1/2 and its upstream kinases, c-Raf and MEK, was increased in myocilin-expressing cells compared with control cells. Elevated phosphorylation of ERK1/2 was also observed in the trabecular meshwork of transgenic mice expressing 6-fold higher levels of myocilin when compared with their wild-type littermates. These results suggest that myocilin promotes cell proliferation and resistance to apoptosis via the ERK1/2 MAPK signaling pathway.  相似文献   

20.
Chaperones assist in the correct folding of newly synthesised proteins in the endoplasmic reticulum (ER) of cells, this being essential for the translocation of protein molecules to specific subcellular compartments, extracellular matrix or to biological fluids. The biosynthesis of some ER chaperones is regulated by glucose. They are named "glucose-regulated proteins" (GRPs). The function of some GRPs depends on oxygen, a subgroup named "oxygen-regulated proteins" (ORPs). The biosynthesis of ORPs is induced by deprivation of glucose or oxygen. Exposure of HeLa cells to glucose starvation induces the biosynthesis of various GRPs including ORP 150. The expression of ORP 150 is regulated by the concentration of glucose in the culture medium, being induced by a shortage and repressed by a presence of glucose. We have shown that both glucose starvation and transfection of cells with siRNA (specific to ORP 150 mRNA) evoke similar, but quantitatively different, effects. The cells grown for 72 h in a 4.5 mg/ml glucose-containing medium demonstrated low apoptosis (3.7%) whereas in a 0.5 mg/ml glucose-containing medium the apoptosis was increased to 10%. The effect of transfection on apoptosis was distinctly higher with almost 22% of apoptotic cells detected in 72 h cultures. One may conclude that ORP 150 reduces the pro-apoptotic effects of glucose starvation. Such a hypothesis is supported by the observation that the transfection procedure makes HeLa cells resistant to the regulatory effect of glucose on ORP 150 production. The transfected cells do not respond to glucose starvation with an overexpression of ORP 150. It is apparent from our experiments that ORP 150 plays an important role in adaptation of cells to the shortage of glucose and reduces the pro-apoptotic effect of glucose starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号