首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Chaperones assist in the correct folding of newly synthesised proteins in the endoplasmic reticulum (ER) of cells, this being essential for the translocation of protein molecules to specific subcellular compartments, extracellular matrix or to biological fluids. The biosynthesis of some ER chaperones is regulated by glucose. They are named "glucose-regulated proteins" (GRPs). The function of some GRPs depends on oxygen, a subgroup named "oxygen-regulated proteins" (ORPs). The biosynthesis of ORPs is induced by deprivation of glucose or oxygen. Exposure of HeLa cells to glucose starvation induces the biosynthesis of various GRPs including ORP 150. The expression of ORP 150 is regulated by the concentration of glucose in the culture medium, being induced by a shortage and repressed by a presence of glucose. We have shown that both glucose starvation and transfection of cells with siRNA (specific to ORP 150 mRNA) evoke similar, but quantitatively different, effects. The cells grown for 72 h in a 4.5 mg/ml glucose-containing medium demonstrated low apoptosis (3.7%) whereas in a 0.5 mg/ml glucose-containing medium the apoptosis was increased to 10%. The effect of transfection on apoptosis was distinctly higher with almost 22% of apoptotic cells detected in 72 h cultures. One may conclude that ORP 150 reduces the pro-apoptotic effects of glucose starvation. Such a hypothesis is supported by the observation that the transfection procedure makes HeLa cells resistant to the regulatory effect of glucose on ORP 150 production. The transfected cells do not respond to glucose starvation with an overexpression of ORP 150. It is apparent from our experiments that ORP 150 plays an important role in adaptation of cells to the shortage of glucose and reduces the pro-apoptotic effect of glucose starvation.  相似文献   

2.
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of ER chaperones and foldases under stress conditions, to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI) or immunophilins, calnexin and calreticulin.Key words: Abiotic stress, chaperones, endoplasmic reticulum, foldases, immunophilins, protein folding, signal transduction  相似文献   

3.
4.
在前期研究中发现,氧调节蛋白150(ORP150)是与肝细胞癌相关的糖蛋白.进一步研究了ORP150的表达水平与肝细胞癌的相关性.免疫印迹、细胞免疫化学和定量PCR分别在蛋白质水平和mRNA水平检测了ORP150的表达.运用RNA干扰技术检测了其对凋亡和肝细胞癌侵袭性的影响.发现:无论是蛋白质水平还是mRNA水平,与正常肝细胞相比,ORP150在肝细胞癌中表达明显上调;经RNA干扰后,肝细胞癌的凋亡明显增加,但肿瘤细胞的侵袭性无改变.肝细胞癌中,ORP150表达上调,它可能抑制肿瘤细胞的凋亡而促进其生长.ORP150有可能成为肝细胞癌的治疗靶点.  相似文献   

5.
The endoplasmic reticulum (ER) is the primary site for synthesis and folding of secreted and membrane-bound proteins. Proteins are translocated into ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to assist in proper folding. Properly folded proteins traffic from the ER to the Golgi apparatus; misfolded proteins are targeted to degradation. Unfolded protein response (UPR) is a highly regulated intracellular signaling pathway that prevents accumulation of misfolded proteins in the ER lumen. UPR provides an adaptive mechanism by which cells can augment protein folding and processing capacities of the ER. If protein misfolding is not resolved, the UPR triggers apoptotic cascades. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintain cellular homeostasis and determine cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of prosurvival/prodeath pathways. We discuss the signaling/communication between the ER and mitochondria and focus on the role of the mitochondrial permeability transition pore in these complex processes.  相似文献   

6.
The endoplasmic reticulum and the unfolded protein response   总被引:2,自引:0,他引:2  
The endoplasmic reticulum (ER) is the site where proteins enter the secretory pathway. Proteins are translocated into the ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to attain their final appropriate conformation. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed towards a degradative pathway. In addition, those processes that prevent accumulation of unfolded proteins in the ER lumen are highly regulated by an intracellular signaling pathway known as the unfolded protein response (UPR). The UPR provides a mechanism by which cells can rapidly adapt to alterations in client protein-folding load in the ER lumen by expanding the capacity for protein folding. In addition, a variety of insults that disrupt protein folding in the ER lumen also activate the UPR. These include changes in intralumenal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. Persistent protein misfolding initiates apoptotic cascades that are now known to play fundamental roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis and neurodegenerative diseases.  相似文献   

7.
The ER's capacity to process proteins is limited, and stress caused by accumulation of unfolded and misfolded proteins (ER stress) contributes to human disease. ER stress elicits the unfolded protein response (UPR), whose components attenuate protein synthesis, increase folding capacity, and enhance misfolded protein degradation. Here, we report that P58(IPK)/DNAJC3, a UPR-responsive gene previously implicated in translational control, encodes a cytosolic cochaperone that associates with the ER protein translocation channel Sec61. P58(IPK) recruits HSP70 chaperones to the cytosolic face of Sec61 and can be crosslinked to proteins entering the ER that are delayed at the translocon. Proteasome-mediated cytosolic degradation of translocating proteins delayed at Sec61 is cochaperone dependent. In P58(IPK-/-) mice, cells with a high secretory burden are markedly compromised in their ability to cope with ER stress. Thus, P58(IPK) is a key mediator of cotranslocational ER protein degradation, and this process likely contributes to ER homeostasis in stressed cells.  相似文献   

8.
9.
10.
SS Cao  RJ Kaufman 《Current biology : CB》2012,22(16):R622-R626
In eukaryotic cells, the endoplasmic reticulum (ER) is a membrane-enclosed interconnected organelle responsible for the synthesis, folding, modification, and quality control of numerous secretory and membrane proteins. The processes of protein folding and maturation are highly assisted and scrutinized but are also sensitive to changes in ER homeostasis, such as Ca(2+) depletion, oxidative stress, hypoxia, energy deprivation, metabolic stimulation, altered glycosylation, activation of inflammation, as well as increases in protein synthesis or the expression of misfolded proteins or unassembled protein subunits. Only properly folded proteins can traffic to the Golgi apparatus, whereas those that misfold are directed to ER-associated degradation (ERAD) or to autophagy. The accumulation of unfolded/misfolded proteins in the ER activates signaling events to orchestrate adaptive cellular responses. This unfolded protein response (UPR) increases the ER protein-folding capacity, reduces global protein synthesis, and enhances ERAD of misfolded proteins.  相似文献   

11.
Endoplasmic reticulum quality control and apoptosis   总被引:7,自引:0,他引:7  
  相似文献   

12.
内质网(endoplasmic reticulum,ER)广泛存在于真核细胞中,是负责细胞中分泌性蛋白合成和折叠的细胞器。20世纪70年代开始发现了许多干扰内质网功能的因素可直接或间接使内质网中未折叠的蛋白质堆积,使细胞处于应激状态(ER stress),细胞通过未折叠蛋白质反应(unfolded protein response,UPR)来适应内质网应激。未折叠蛋白质反应途径(UPR pathway)是一种信号转导途径,最早在酵母中阐明。近年来对哺乳动物细胞未折叠蛋白质反应途径的研究也获得了重要成果。毒性、缺氧、病毒感染等不良刺激可使细胞内环境的稳态受到破坏,诱发一系列内质网应激反应(ER stress)来维持细胞的正常功能。当细胞受到持续而强烈的刺激时,不能缓解内质网应激状态,细胞会走向凋亡。近年来的研究发现,CHOP/GADD153作为一种前凋亡分子,在内质网应激介导的细胞凋亡中发挥着重要作用,参与肿瘤、阿尔茨海默、糖尿病等诸多疾病的发生和发展过程。  相似文献   

13.
The efficient production, folding, and secretion of proteins is critical for cancer cell survival. However, cancer cells thrive under stress conditions that damage proteins, so many cancer cells overexpress molecular chaperones that facilitate protein folding and target misfolded proteins for degradation via the ubiquitin-proteasome or autophagy pathway. Stress response pathway induction is also important for cancer cell survival. Indeed, validated targets for anti-cancer treatments include molecular chaperones, components of the unfolded protein response, the ubiquitin-proteasome system, and autophagy. We will focus on links between breast cancer and these processes, as well as the development of drug resistance, relapse, and treatment.  相似文献   

14.
To examine the effects of overexpression of trigger factor (TF) on recombinant proteins produced in Escherichia coli, we constructed plasmids that permitted controlled expression of TF alone or together with the GroEL-GroES chaperones. The following three proteins that are prone to aggregation were tested as targets: mouse endostatin, human oxygen-regulated protein ORP150, and human lysozyme. The results revealed that TF overexpression had marked effects on the production of these proteins in soluble forms, presumably through facilitating correct folding. Whereas overexpression of TF alone was sufficient to prevent aggregation of endostatin, overexpression of TF together with GroEL-GroES was more effective for ORP150 and lysozyme, suggesting that TF and GroEL-GroES play synergistic roles in vivo. Although coexpression of the DnaK-DnaJ-GrpE chaperones was also effective for endostatin and ORP150, coexpression of TF and GroEL-GroES was more effective for lysozyme. These results attest to the usefulness of the present expression plasmids for improving protein production in E. coli.  相似文献   

15.
To examine the effects of overexpression of trigger factor (TF) on recombinant proteins produced in Escherichia coli, we constructed plasmids that permitted controlled expression of TF alone or together with the GroEL-GroES chaperones. The following three proteins that are prone to aggregation were tested as targets: mouse endostatin, human oxygen-regulated protein ORP150, and human lysozyme. The results revealed that TF overexpression had marked effects on the production of these proteins in soluble forms, presumably through facilitating correct folding. Whereas overexpression of TF alone was sufficient to prevent aggregation of endostatin, overexpression of TF together with GroEL-GroES was more effective for ORP150 and lysozyme, suggesting that TF and GroEL-GroES play synergistic roles in vivo. Although coexpression of the DnaK-DnaJ-GrpE chaperones was also effective for endostatin and ORP150, coexpression of TF and GroEL-GroES was more effective for lysozyme. These results attest to the usefulness of the present expression plasmids for improving protein production in E. coli.  相似文献   

16.
Protein folding and diseases   总被引:3,自引:0,他引:3  
For most of proteins to be active, they need well-defined three-dimensional structures alone or in complex. Folding is a process through which newly synthesized proteins get to the native state. Protein folding inside cells is assisted by various chaperones and folding factors, and misfolded proteins are eliminated by the ubiquitin-proteasome degradation system to ensure high fidelity of protein expression. Under certain circumstances, misfolded proteins escape the degradation process, yielding to deposit of protein aggregates such as loop-sheet polymer and amyloid fibril. Diseases characterized by insoluble deposits of proteins have been recognized for long time and are grouped as conformational diseases. Study of protein folding mechanism is required for better understanding of the molecular pathway of such conformational diseases.  相似文献   

17.
Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.  相似文献   

18.
Oxidized LDLs (oxLDLs) induce apoptosis, which contributes to the pathogenesis of atherosclerosis. The 150 kDa oxygen-regulated protein (ORP150), an endoplasmic reticulum (ER)-resident chaperone, is upregulated by hypoxia and prevents ischemia-induced cell death. The aim of this work was to investigate whether and how ORP150 can prevent apoptosis induced by oxLDLs in vascular cells. OxLDLs induced ORP150 expression in the ER of human microvascular endothelial cell line (HMEC-1). ORP150 expression was blocked by antioxidants, by the permeant calcium chelator BAPTA-AM, and by inhibitors of the inositol-1,4,5 trisphosphate (IP3) receptors, 2-aminoethyl diphenylborinate (2-APB) and xestospongin C. ORP150 silencing by siRNA-enhanced oxLDL-induced apoptosis, while forced ORP150 expression increased the resistance of cells via an inhibition of the oxLDL-induced calcium rise, and of subsequent calpain activation, cytochrome c release, caspase 3 activation and apoptosis. A similar protective effect was achieved by BAPTA-AM, 2-APB and xestospongin C. Altogether, these data indicate that (i)ORP150 inhibits oxLDL-induced apoptosis by blocking calcium signaling and subsequent apoptosis, (ii)calcium released from ER stores through IP3 channels is involved in the oxLDL-induced calcium rise and apoptosis, and is inhibited by ORP150. Finally, ORP150 is expressed in advanced atherosclerotic lesions, where it may locally participate to reduce the apoptotic effect of oxLDLs and the subsequent risk of plaque rupture.  相似文献   

19.
20.
The 150-kDa oxygen-regulated protein (ORP150) is a member of glucose-regulated proteins (GRPs), which are induced by stressful conditions such as oxygen or glucose deprivation. Here we investigated the highly abundant expression of ORP150 in mouse pancreas and its relationship with insulin secretion. Immunohistochemical analysis revealed that ORP150 expression was restricted to islets, especially to beta cells. The beta cell-specific expression was also observed in a mouse insulinoma cell line, MIN6, which secretes insulin in response to increased glucose concentration. Furthermore, ORP150 in islets dramatically diminished by fasting, concomitant with reduction of the serum insulin level. These results strongly suggest the role for ORP150 in insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号