首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resynthesis of the photosynthetic apparatus and resumption of CO2 assimilation upon rehydration is reported for the monocotyledonous and poikilochlorophyllous desiccation-tolerant (PDT) plant Xerophyta scabrida (Pax) Th. Dur. et Schinz (Velloziaceae). During desiccation there was a complete breakdown of chlorophylls whereas the total carotenoid content of air-dried leaves was reduced to about 22% of that of functional leaves. The prerequisites for the resynthesis of photosynthetic pigments and functional thylakoids were the reappearance of turgor and maximum leaf water content at 2 and 10 h after rehydration, respectively. The period of increased initial respiration after rewetting leaves (rehydration respiration) lasted up to 30 h and was thus 6 to 10 times longer than in homoiochlorophyllous desiccation-tolerant plants (HDTs) in which chlorophylls are retained during desiccation. Accumulation of chlorophylls a + b and total carotenoids (xanthophylls and carotene) started 10 h after rehydration. Normal levels of chlorophyll and carotenoids were obtained 72 h after rehydration. Values for the variable-fluorescence decrease ratio (Rfd690 values), an indicator of photochemical activity, showed that photochemical function started 10 h after rehydration, but normal values of 2.7 were reached only 72 h after rehydration. Net CO2 assimilation started 24 h after rewetting and normal rates were reached after 72 h, at the same time as normal values of stomatal conductance were obtained. The increasing rates of net CO2 assimilation were paralleled by decreasing values of the intercellular CO2 concentration. All photosynthetic parameters investigated showed values normal for functional chloroplasts by 72 h after the onset of rehydration. Fully regreened leaves of the presumed C3 plant X. scabrida exhibited a net CO2 assimilation rate which was in the same range as that of other C3 plants and higher than that of recovered HDT plants. The fundamental difference between air-dried PDT plants, such as X. scabrida, which have to resynthesize the photosynthetic pigment apparatus, and air-dried HDT plants, which only undergo a functional recovery, is discussed.Abbreviations c -carotene - ci intercellular CO2 concentration - Car x + c total carotenoid content x + c - Chl a + b total chlorophyll a + b content - gs stomatal conductance - HDT homoiochlorophyllous desiccation tolerant - LWC leaf-water content - PN net photosynthesis rate - PDT poikilochloro phyllous desiccation tolerant - Rd dark respiration - Rfd variable fluorescence decrease ratio (Rfd = fd/fs) - x xanthophylls The senior author thanks the Deutschem Akademischem Auslandsdienst (Bonn, Germany), Soros Foundation (Budapest, Hungary) and European Community (Brussels, Belgium) for providing fellowships for research periods at Karlsruhe. The research was also supported by the Hungarian Scientific Research Foundation (OTKA I/848, OTKA I/3.1545 and OTKA I/4.F.5359). We wish to thank Professor T. Pocs (Eger, Hungary — Morogoro, Tanzania) for collecting the plant material and to the linguist Mr. A. Jackson for correcting the English.  相似文献   

2.
Diurnal time courses of net CO2 assimilation rates, stomatal conductance and light-driven electron fluxes were measured in situ on attached leaves of 30-year-old Turkey oak trees (Quercus cerris L.) under natural summer conditions in central Italy. Combined measurements of gas exchange and chlorophyll a fluorescence under low O2 concentrations allowed the demonstration of a linear relationship between the photochemical efficiency of PSII (fluorescence measurements) and the apparent quantum yield of gross photosynthesis (gas exchange). This relationship was used under normal O2 to compute total light-driven electron fluxes, and to partition them into fractions used for RuBP carboxylation or RuBP oxygenation. This procedure also yielded an indirect estimate of the rate of photorespiration in vivo. The time courses of light-driven electron flow, net CO2 assimilation and photorespiration paralleled that of photosynthetic photon flux density, with important afternoon deviations as soon as a severe drought stress occurred, whereas photochemical efficiency and maximal fluorescence underwent large but reversible diurnal decreases. The latter observation indicated the occurrence of a large non-photochemical energy dissipation at PSII. We estimated that less than 60% of the total photosynthetic electron flow was used for carbon assimilation at midday, while about 40% was devoted to photorespiration. The rate of carbon loss by photorespiration (R1) reached mean levels of 56% of net assimilation rates. The potential application of this technique to analysis of the relative contributions of thermal de-excitation at PSII and photorespiratory carbon recycling in the protection of photosynthesis against stress effects is discussed.  相似文献   

3.
Apex and Bristol cultivars of oilseed rape (Brassica napus) were irradiated with 0.63 W m?2 of UV-B over 5 d. Analyses of the response of net leaf carbon assimilation to intercellular CO2 concentration were used to examine the potential limitations imposed by stomata, carboxylation velocity and capacity for regeneration of ribulose 1,5-bis-phosphate on leaf photosynthesis. Simultaneous measurements of chlorophyll fluorescence were used to estimate the maximum quantum efficiency of photosystem II (PSII) photochemistry, the quantum efficiency of linear electron transport at steady-state photosynthesis, and the light and CO2-saturated rate of linear electron transport. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) content and activities were assayed in vitro. In both cultivars the UV-B treatment resulted in decreases in the light-saturated rate of CO2 assimilation, which were accompanied by decreases in carboxylation velocity and Rubisco content and activity. No major effects of UV-B were observed on end-product inhibition and stomatal limitation of photosynthesis or the rate of photorespiration relative to CO2 assimilation. In the Bristol cultivar, photoinhibition of PSII and loss of linear electron transport activity were observed when CO2 assimilation was severely inhibited. However, the Apex cultivar exhibited no major inhibition of PSII photochemistry or linear electron transport as the rate of CO2 assimilation decreased. It is concluded that loss of Rubisco is a primary factor in UV-B inhibition of CO2 assimilation.  相似文献   

4.
We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non‐volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO2 concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy‐dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non‐volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non‐volatile isoprenoids operate when water deficit is more extreme.  相似文献   

5.

A, net CO2 assimilation rate
E, leaf transpiration
ETR, electron transport rate
Fs, fluorescence yield at steady state
Fm and Fm', maximal fluorescence levels when all PSII reaction centres are closed in dark- and light-acclimated leaves, respectively
Fo and Fo', initial fluorescence levels when all PSII reaction centres are closed in dark- and light-acclimated leaves, respectively
Fv/Fm, efficiency of excitation capture by open PSII in dark-adapted leaves
ΔF/Fm', actual photochemical efficiency of PSII
g, stomatal conductance
NPQ, non-photochemical quenching of chlorophyll fluorescence
PPFD, photosynthetic photon flux density
ΨPD and ΨMD, leaf water potential at pre-dawn and midday, respectively
Rl, estimated photorespiration rate
I1 and I2, Irrigation treatments
R, Recovery treatment
D1 and D2, drought treatments
HD1 and HD2, hard drought treatments

Diurnal time courses of chlorophyll fluorescence and gas-exchange rates were measured in young potted grapevines (Vitis vinifera L. cv. Tempranillo) subjected to different conditions of water supply under Mediterranean summer conditions. The irrigated plants exhibited typical diurnal patterns for all measured parameters, showing a correspondence between electron transport rate, net CO2 assimilation and stomatal conductance. Mild decreases in soil-water availability led to different degrees of down-regulation of photosynthesis and increased nonphotochemical quenching of chlorophyll fluorescence. A good correspondence between electron transport rate and CO2 assimilation was still maintained, suggesting a coregulation of both photosynthetic processes. In contrast, a severe water deficit induced a drastic down-regulation of photosynthesis and breakage of the above-mentioned link. Both midday net CO2 assimilation and electron transport rate significantly correlated with pre-dawn water potential (ΨPD) (r2 = 0·65 and r2 = 0·92, P < 0·001, respectively). However, when field data were analysed, the relationship between electron transport rate and ΨPD was not maintained, although net CO2 assimilation was similarly correlated with ΨPD. Interestingly, the steady-state chlorophyll fluorescence yield was a good indicator of plant water stress.  相似文献   

6.
The mechanisms involved in desiccation tolerance of lichens and their photobionts are still poorly understood. To better understand these mechanisms we have studied dehydration rate and desiccation time in Trebouxia, the most abundant chlorophytic photobiont in lichen. Our findings indicate that the drying rate has a profound effect on the recovery of photosynthetic activity of algae after rehydration, greater than the effects of desiccation duration. The basal fluorescence (Fo) values in desiccated algae were significantly higher after rapid dehydration, than after slow dehydration, suggesting higher levels of light energy dissipation in slow-dried algae. Higher values of PSII electron transport were recovered after rehydration of slow-dried Trebouxia erici compared to rapid-dried algae. The main component of non-photochemical quenching after slow dehydration was energy dependent (q E), whereas after fast dehydration it was photoinhibition (q I). Although q E seems to play a role during desiccation recovery, no significant variations were detected in the xanthophyll cycle components. Desiccation did not affect PSI functionality. Classical antioxidant activities like superoxide dismutase or peroxidase decreased during desiccation and early recovery. Dehydrins were detected in the lichen-forming algae T. erici and were constitutively expressed. There is probably a minimal period required to develop strategies which will facilitate transition to the desiccated state in this algae. In this process, the xanthophyll cycle and classical antioxidant mechanisms play a very limited role, if any. However, our results indicate that there is an alternative mechanism of light energy dissipation during desiccation, where activation is dependent on a sufficiently slow dehydration rate.  相似文献   

7.
The ecophysiological responses of the homoiochlorophyllous desiccation-tolerant (HDT) plant Haberlea rhodopensis showed that this plant could tolerate water deficit and both leaves and roots had high ability to survive severe desiccation. The changes and correlation between CO2 assimilation, stomatal conductance, contents of photosynthetic pigments, root respiration and specific leaf area during dehydration–rehydration cycle were investigated. The physiological activity of leaves and roots were examined in fully hydrated (control) plants and during 72 h of dehydration, as well as following 96 h of rehydration every 6 and 24 h. After 6 h of dehydration, the stomatal conductance declined and the intercellular CO2 concentration increased. The reduction in CO2 assimilation rate was observed after 54 h of dehydration. There was a good correlation between the root respiration and water content. Our results showed that the plasticity of adaptation in leaves and roots were different during extreme water conditions. Roots were more sensitive and reacted faster to water stress than leaves, but their activity rapidly recovered due to immediate and efficient utilization of periodic water supply.  相似文献   

8.
K. B. Schwab  U. Schreiber  U. Heber 《Planta》1989,177(2):217-227
Using non-invasive techniques (CO2 gas exchange, light scattering, light absorption, chlorophyll fluorescence, chlorophyll luminescence), we have analysed the response of respiration and photosynthesis to dehydration and rehydration of leaves of the resurrection plants Craterostigma plantagineum Hochst., Ramonda mykoni Reichb. and Ceterach officinarum Lam. et DC. and of the drought-sensitive mesophyte spinach (Spinacia oleracea L.). The following observations were made: (i) The rate of water loss during wilting of detached leaves of drought-tolerant resurrection plants was similar to that for leaves of the sensitive mesophyte, spinach. Leaves of Mediterranean xerophytes lost water much more slowly. (ii) Below a residual water content of about 20%, leaves of spinach did not recover turgor on rewatering, whereas leaves of the resurrection plants did. (iii) Respiration was less sensitive to the loss of water during wilting in the resurrection plants than in spinach. (iv) The sensitivity of photosynthesis to dehydration was similar in spinach and the resurrection plants. Up to a water loss of 50% from the leaves, photosynthesis was limited by stomatal closure, not by inhibition of reactions of the photosynthetic apparatus. Photosynthesis was inhibited and stomates reopened when loss of water became excessive. (v) After the leaves had lost 80% of their water or more, the light-dependent reactions of photosynthetic membranes were further inhibited by rewatering in spinach; they recovered in the resurrection plants. (vi) In desiccated leaves of the resurrection plants, slow rehydration reactivated mitochondrial gas exchange faster than photosynthetic membrane reactions. Photosynthetic carbon assimilation recovered only slowly.  相似文献   

9.
The interactions among water content, chlorophyll a fluorescence emission, xanthophyll interconversions and net photosynthesis were analyzed during dehydration in desiccation-tolerant Frullania dilatata (L.) Dum. and desiccation-intolerant Pellia endiviifolia (Dicks) Dum. Water loss led to a progressive suppression of photosynthetic carbon assimilation in both species. Their chlorophyll fluorescence characteristics at low water content were: low photosynthetic quantum conversion efficiency, high excitation pressure on photosystem II and strong non-photochemical quenching. However, dissipation activity was lower in P. endiviifolia and was not accompanied by a rise in the concentration of de-epoxidised xanthophylls as F. dilatata. The photosynthetic apparatus of F. dilatata remained fully and speedily recuperable after desiccation in as indicated by the restoration of chlorophyll fluorescence parameters to pre-desiccation values upon rehydration. A lack of recovery upon remoistening of P. endiviifolia indicated permanent and irreversible damage to photosystem II. The results suggest that F. dilatata possesses a desiccation-induced zeaxanthin-mediated photoprotective mechanism which might aid photosynthesis recovery when favourable conditions are restored by alleviating photoinhibitory damage during desiccation. This avoidance mechanism might have evolved as an adaptative response to repeated cycles of desiccation and rehydration that represent a real threat to photosynthetic viability. Received: 12 January 1998 / Accepted: 14 July 1998  相似文献   

10.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (P N), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems.  相似文献   

11.

Background and Aims

Haberlea rhodopensis is a perennial, herbaceous, saxicolous, poikilohydric flowering plant that is able to survive desiccation to air-dried state under irradiance below 30 µmol m−2 s−1. However, desiccation at irradiance of 350 µmol m−2 s−1 induced irreversible changes in the photosynthetic apparatus, and mature leaves did not recover after rehydration. The aim here was to establish the causes and mechanisms of irreversible damage of the photosynthetic apparatus due to dehydration at high irradiance, and to elucidate the mechanisms determining recovery.

Methods

Changes in chloroplast structure, CO2 assimilation, chlorophyll fluorescence parameters, fluorescence imaging and the polypeptide patterns during desiccation of Haberlea under medium (100 µmol m−2 s−1; ML) irradiance were compared with those under low (30 µmol m−2 s−1; LL) irradiance.

Key Results

Well-watered plants (control) at 100 µmol m−2 s−1 were not damaged. Plants desiccated at LL or ML had similar rates of water loss. Dehydration at ML decreased the quantum efficiency of photosystem II photochemistry, and particularly the CO2 assimilation rate, more rapidly than at LL. Dehydration induced accumulation of stress proteins in leaves under both LL and ML. Photosynthetic activity and polypeptide composition were completely restored in LL plants after 1 week of rehydration, but changes persisted under ML conditions. Electron microscopy of structural changes in the chloroplast showed that the thylakoid lumen is filled with an electron-dense substance (dense luminal substance, DLS), while the thylakoid membranes are lightly stained. Upon dehydration and rehydration the DLS thinned and disappeared, the time course largely depending on the illumination: whereas DLS persisted during desiccation and started to disappear during late recovery under LL, it disappeared from the onset of dehydration and later was completely lost under ML.

Conclusions

Accumulation of DLS (possibly phenolics) in the thylakoid lumen is demonstrated and is proposed as a mechanism protecting the thylakoid membranes of H. rhodopensis during desiccation and recovery under LL. Disappearance of DLS during desiccation in ML could leave the thylakoid membranes without protection, allowing oxidative damage during dehydration and the initial rehydration, thus preventing recovery of photosynthesis.Key words: Haberlea rhodopensis, resurrection plant, electron microscopy, blue–green fluorescence, chlorophyll fluorescence  相似文献   

12.
The ability of photosynthesis and CAM to acclimate to low (220 µmol m?2 s?1; LL) and relatively high (550 µmol m?2 s?1; HL) photosynthetic photon flux densities (PPFD) was investigated in the CAM-cycling species Delosperma tradescantioides by means of CO2 gas exchange and chlorophyll fluorescence analysis. Furthermore, the influence of short-term drought on malic acid accumulation and the activity of photosystem II (PSII) was studied to assess the possible interactions between drought and the prevailing PPFD in this species. HL plants showed features of sun versus shade acclimation relative to LL plants. Nocturnal malic acid accumulation (Δ-malate) and leaf water content also tended to be higher in HL plants. Irrespective of the PPFD during growth, the weak Δ-malate doubled within 3 days of drought. Despite largely restricted CO2 uptake, photosynthetic activity as estimated from fluorescence analysis declined only ca 5%. After 7 days of drought, when plants showed CAM-idling and Δ-malate had decreased again, potential carbon assimilation was still ca 84% of that in well-watered plants and remained relatively constant throughout the day. Decarboxylation of malic acid accounted for ca 23% of potential assimilation assuming total oxidation of a maximum portion of this organic acid. Drought did not affect predawn maximum photochemical efficiency (Fv/Fm). Nonphotochemical quenching (qN) increased (24%) in response to desiccation and resulted in a more or less constant reduction state of PSII. This increase in qN resulted mainly from the change in its fast-relaxing component (qNF), while the slow component (qNS) was significant only at or above saturating PPFD in both HL and LL plants. The photon response characteristics of PSII, which differed between LL and HL plants, were unaffected by short-term drought. Photon harvesting and photon use were always adjusted to guarantee a low reduction state of PSII. Results suggest that in both LL and HL plants CAM-cycling may help to stabilize photosynthesis but to a large extent by other means than simply providing internally derived CO2.  相似文献   

13.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

14.
Lichens and phototolerant poikilohydric mosses differ from spinach leaves, fern fronds or photosensitive mosses in that they show strongly decreased Fo chlorophyll fluorescence after drying. This desiccation-induced fluorescence loss is rapidly reversible under rehydration. Fluorescence emission from Photosystem II at 685 nm was decreased more strongly by dehydration than 720 nm emission. Reaction centers of Photosystem II lose activity on dehydration and regain it on hydration. Heating of desiccated lichens increased Fo chlorophyll fluorescence. The activation energy for the reversible part of the temperature-dependent fluorescence increase was 0.045 eV, which corresponds to the energy difference between the 680 and 697 nm absorption bands. In desiccated chlorolichens such as Parmelia sulcata, heating induces the appearance of positive variable fluorescence related to the reversible reduction of QA due to overcoming the energy barrier. This is interpreted to provide information on the mechanism of photoprotection: energy is dissipated by changing Chl680 or P680 into a chlorophyll form, which absorbs at 700 nm and emits light at 720 nm (Chl-720 or P680(700)) with a low quantum yield. Dissipation of light energy in this trap is activated by desiccation.  相似文献   

15.
The study investigated the effects of different CaCl2 concentrations (2, 5, and 10 mM) on photosynthetic enzymatic activities, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Plants were sprayed with either CaCl2 or distilled water until run-off. Irrigation was then withheld to induce drought stress. The strength of drought stress was evaluated by relative leaf water content and soil water content, which was 27.3 and 9.5% on day 0 and day 12, respectively. Drought stress decreased activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, chlorophyll (a+b) content, net photosynthetic rate, stomatal conductance, transpiration rate, electron transport rate, the maximal quantum yield of PSII photochemistry, and effective quantum yield of PSII in tung tree seedlings. The CaCl2 pretreatments alleviated the negative effect of drought stress to some degree on all the parameters mentioned above.  相似文献   

16.
In the present study, photosynthetic parameters including gas exchanges, pigment contents, and chlorophyll fluorescence, were compared in two contrasting local Medicago truncatula lines TN6.18 and TN8.20, in response to salt added to the nutrient solution. Plants were cultivated under symbiotic nitrogen fixation (SNF) after inoculation with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl), and grown in a controlled glasshouse. On one month old plants (with active SNF), salt treatment (75 mM NaCl) was gradually applied. Photosynthesis, assimilating pigments and chlorophyll fluorescence were monitored throughout the experiment during both short and long terms, compared to control (non-saline) conditions. A genotypic variation in salt tolerance was found; TN6.18 was the more sensitive to salinity. The relative tolerance of TN8.20 was concomitant with the highest photochemical quenching coefficient (qP) affecting the maximum quantum yield of PSII (Y); the real quantum yield (?exc) was the most affected in the sensitive line. Moreover, stomatal and PSII reaction centers activities differed clearly between the studied lines. We found that the effect of salinity on photosynthesis of M. truncatula was related to PSII activity reduction rather than to stomatal conductance limitation. Photosynthesis was reduced by the inhibition of CO2 assimilation caused by PSII damage. This was clearly estimated by the Y, ?exc and especially by the quantum yield of electron transport of PSII (ΦPSII). Thus, on the basis of our results on the two local M. truncatula lines, we recommend the use of chlorophyll fluorescence as non-destructive screening method to discriminate susceptible and resistant legumes to salt stress.  相似文献   

17.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

18.
Naturally grown trees of Mediterranean evergreen oak (Quercus ilex L.), representing the climax species of the region, were enclosed in six large open-top chambers and exposed to ambient and elevated CO2 concentrations during a 3 year period. Maximum daily net photosynthetic rates measured at the two different CO2 concentrations were from 30 to 100% higher in elevated than in ambient [CO2] throughout the experimental period. The increase in maximum daily photosynthesis was also accompanied by a 93% rise in the apparent quantum yield of CO2 assimilation, measured during periods of optimum soil moisture conditions. Hence, no clear evidence of down-regulation of net photosynthetic activity was found. Interactions between atmospheric CO2 concentration and plant water stress were studied by following the natural evolution of drought in different seasons and years. At each level of water stress, the maximum rate of carbon assimilation was higher in elevated than in ambient [CO2] by up to 100%. Analysis of in vivo chlorophyll fluorescence parameters in normal (21%) and low (2%) oxygen concentrations provided useful insights into the functioning and stability of the photosynthetic processes. The photochemical efficiency of PSII (Fv/Fm) progressively decreased as drought conditions became more evident; this trend was accentuated under elevated [CO2]. Thermal de-excitation processes were possibly more significant under elevated than under ambient [CO2], in a combination of environmental stresses. This research suggests two possible conclusions: (i) a ‘positive’ interaction between elevated [CO2] and carbon metabolism can be obtained through relief of water stress limitation in the summer months, and (ii) elevated [CO2], under drought conditions, may also enhance the significance of slow-relaxing quenching.  相似文献   

19.
The effect of high irradiance (HI) during desiccation and subsequent rehydration of the homoiochlorophyllous desiccation-tolerant shade plant Haberlea rhodopensis was investigated. Plants were irradiated with a high quantum fluence rate (HI; 350 μmol m−2 s−1 compared to ca. 30 μmol m−2 s−1 at the natural rock habitat below trees) and subjected either to fast desiccation (tufts dehydrated with naturally occurring thin soil layers) or slow desiccation (tufts planted in pots in peat-soil dehydrated by withholding irrigation). Leaf water content was 5 % of the control after 4 d of fast and 19 d of slow desiccation. Haberlea was very sensitive to HI under all conditions. After 19 d at HI, even in well-watered plants there was a strong reduction of rates of net photosynthesis and transpiration, contents of chlorophyll (Chl) and carotenoids, as well as photosystem 2 activity (detected by the Chl fluorescence ratio RFd). Simultaneously, the blue/red and green/red fluorescence ratios increased considerably suggesting increased synthesis of polyphenolic compounds. Desiccation of plants in HI induced irreversible changes in the photosynthetic apparatus and leaves did not recover after rehydration regardless of fast or slow desiccation. Only young leaves survived desiccation.  相似文献   

20.
The characteristics of photosynthetic gas exchange, chlorophyll a fluorescence, and xanthophyll cycle pigments during flag leaf senescence of field-grown wheat plants were investigated. With senescence progressing, the light-saturated net CO2 assimilation rate expressed either on a basis of leaf area or chlorophyll decreased significantly. The apparent quantum yield of net photosynthesis decreased when expressed on a leaf area basis but increased when expressed on a chlorophyll basis. The maximal efficiency of PSII photochemistry decreased very little while actual PSII efficiency, photochemical quenching, and the efficiency of excitation capture by open PSII centers decreased considerably. At the same time, non-photochemical quenching increased significantly. A substantial decrease in the contents of violaxanthin and zeaxanthin, but a slight decrease in the content of antheraxanthin were observed. However, the de-epoxidation status of the xanthophyll cycle was positively correlated with progressive senescence. This increase was due mainly to a smaller decrease in zeaxanthin than in violaxanthin. Our results suggest that PSII apparatus remained functional, but a down-regulation of PSII occurred under the steady state of photosynthesis in senescent flag leaves. Such a down-regulation was associated with the closure of PSII centers and an enhanced xanthophyll cycle-related thermal dissipation in the PSII antennae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号