首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The functional state of the photosynthetic apparatus of flowering homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and subsequent rehydration was investigated in order to characterize some of the mechanisms by which resurrection plants survive drought stress. The changes in the CO2 assimilation rate, chlorophyll fluorescence parameters, thermoluminescence, fluorescence imaging and electrophoretic characteristics of the chloroplast proteins were measured in control, moderately dehydrated (50% water content), desiccated (5% water content) and rehydrated plants. During the first phase of desiccation the net CO2 assimilation decline was influenced by stomatal closure. Further lowering of net CO2 assimilation was caused by both the decrease in stomatal conductance and in the photochemical activity of photosystem II. Severe dehydration caused inhibition of quantum yield of PSII electron transport, disappearance of thermoluminescence B band and mainly charge recombination related to S2QA takes place. The blue and green fluorescence emission in desiccated leaves strongly increased. It could be suggested that unchanged chlorophyll content and amounts of chlorophyll–proteins, reversible modifications in PSII electron transport and enhanced probability for non-radiative energy dissipation as well as increased polyphenolic synthesis during desiccation of Haberlea contribute to drought resistance and fast recovery after rehydration.  相似文献   

2.
The development of desiccation tolerance by vegetative tissues was an important step in the plants’ conquest of land. To counteract the oxidative stress generated under these conditions the xanthophyll cycle plays a key role. Recent reports have shown that desiccation itself induces de-epoxidation of xanthophyll cycle pigments, even in darkness. The aim of the present work was to study whether this trait is a common response of all desiccation-tolerant plants. The xanthophyll cycle activity and the maximal photochemical efficiency of PS II (F v/F m) as well as β-carotene and α-tocopherol contents were compared during slow and rapid desiccation and subsequent rehydration in six species pairs (with one desiccation-sensitive and one desiccation-tolerant species each) belonging to different taxa. Xanthophyll cycle pigments were de-epoxidised in darkness concomitantly with a decrease in F v/F m during slow dehydration in all the desiccation-tolerant species and in most of the desiccation-sensitive ones. De-epoxidation was reverted in darkness by re-watering in parallel with the recovery of the initial F v/F m. The stability of the β-carotene pool confirmed that its hydroxylation did not contribute to zeaxanthin formation. The α-tocopherol content of most of the species did not change during dehydration. Because it is a common mechanism present in all the desiccation-tolerant taxa and in some desiccation-sensitive species, and considering its role in antioxidant processes and in excess energy dissipation, the induction of the de-epoxidation of xanthophyll cycle pigments upon dehydration in the dark could be understood as a desiccation tolerance-related response maintained from the ancestral clades in the initial steps of land occupation by plants.  相似文献   

3.
4.
Strategies to combat desiccation are critical for organisms living in arid and semi-arid areas. Larvae of the Australian chironomid Paraborniella tonnoiri resist desiccation by reducing water loss. In contrast, larvae of the African species Polypedilum vanderplanki can withstand almost complete dehydration, referred to as anhydrobiosis. For successful anhydrobiosis, the dehydration rate of P. vanderplanki larvae has to be controlled. Here, we desiccated larvae by exposing them to different drying regimes, each progressing from high to low relative humidity, and examined survival after rehydration. In larvae of P. vanderplanki, reactions following desiccation can be categorized as follows: (I) no recovery at all (direct death), (II) dying by unrepairable damages after rehydration (delayed death), and (III) full recovery (successful anhydrobiosis). Initial conditions of desiccation severely affected survival following rehydration, i.e. P. vanderplanki preferred 100% relative humidity where body water content decreased slightly. In subsequent conditions, unfavorable dehydration rate, such as more than 0.7 mg water lost per day, resulted in markedly decreased survival rate of rehydrated larvae. Slow dehydration may be required for the synthesis and distribution of essential molecules for anhydrobiosis. Larvae desiccated at or above maximum tolerable rates sometimes showed temporary recovery but died soon after.  相似文献   

5.
The rough bark of orchard trees (Malus) around Darmstadt is predominantly covered in red to purple‐brown layers (biofilms) of epiphytic terrestrial alga of Trentepohlia umbrina. The smooth bark of forest trees (Fagus sylvatica L. and Acer sp.) in the same area is covered by bright green biofilms composed of the green algae Desmococcus, Apatococcus and Trebouxia, with a few cells of Coccomyxa and ‘Chlorella’ trebouxioides between them. These algae are desiccation tolerant. After samples of bark with the biofilms were kept in dry air in darkness for various periods of time, potential quantum yield of PSII, Fv/Fm, recovered during rehydration upon rewetting. The kinetics and degree of recovery depended on the length of time that the algae were kept in dry air in the desiccated state. Recovery was better for green biofilm samples, i.e. quite good even after 80 days of desiccation (Fv/Fm = ca. 50% of initial value), than the red samples, where recovery was only adequate up to ca. 30–40 days of desiccation (Fv/Fm = ca. 20–55% of initial value). It is concluded that the different bark types constitute different ecophysiological niches that can be occupied by the algae and that can be distinguished by their capacity to recover from desiccation after different times in the dry state.  相似文献   

6.
The moss Fontinalis antipyretica, an aquatic bryophyte previously described as desiccation-intolerant, is known to survive intermittent desiccation events in Mediterranean rivers. To better understand the mechanisms of desiccation tolerance in this species and to reconcile the apparently conflicting evidence between desiccation tolerance classifications and field observations, gross photosynthesis and chlorophyll a fluorescence were measured in field-desiccated bryophyte tips and in bryophyte tips subjected in the laboratory to slow, fast, and very fast drying followed by either a short (30 min) or prolonged (5 days) recovery. Our results show, for the first time, that the metabolic response of F. antipyretica to desiccation, both under field and laboratory conditions, is consistent with a desiccation-tolerance pattern; however, drying must proceed slowly for the bryophyte to regain its pre-desiccation state following rehydration. In addition, the extent of dehydration was found to influence metabolism whereas the drying rate determined the degree of recovery. Photosystem II (PSII) regulation and structural maintenance may be part of the induced desiccation tolerance mechanism allowing this moss to recover from slow drying. The decrease in the photochemical quenching coefficient (qP) immediately following rehydration may serve to alleviate the effects of excess energy on photosystem I (PSI), while low-level non-photochemical quenching (NPQ) would allow an energy shift enabling recovery subsequent to extended periods of desiccation. The findings were confirmed in field-desiccated samples, whose behavior was similar to that of samples slowly dried in the laboratory.  相似文献   

7.
8.
The interactions among water content, chlorophyll a fluorescence emission, xanthophyll interconversions and net photosynthesis were analyzed during dehydration in desiccation-tolerant Frullania dilatata (L.) Dum. and desiccation-intolerant Pellia endiviifolia (Dicks) Dum. Water loss led to a progressive suppression of photosynthetic carbon assimilation in both species. Their chlorophyll fluorescence characteristics at low water content were: low photosynthetic quantum conversion efficiency, high excitation pressure on photosystem II and strong non-photochemical quenching. However, dissipation activity was lower in P. endiviifolia and was not accompanied by a rise in the concentration of de-epoxidised xanthophylls as F. dilatata. The photosynthetic apparatus of F. dilatata remained fully and speedily recuperable after desiccation in as indicated by the restoration of chlorophyll fluorescence parameters to pre-desiccation values upon rehydration. A lack of recovery upon remoistening of P. endiviifolia indicated permanent and irreversible damage to photosystem II. The results suggest that F. dilatata possesses a desiccation-induced zeaxanthin-mediated photoprotective mechanism which might aid photosynthesis recovery when favourable conditions are restored by alleviating photoinhibitory damage during desiccation. This avoidance mechanism might have evolved as an adaptative response to repeated cycles of desiccation and rehydration that represent a real threat to photosynthetic viability. Received: 12 January 1998 / Accepted: 14 July 1998  相似文献   

9.
Lichens and phototolerant poikilohydric mosses differ from spinach leaves, fern fronds or photosensitive mosses in that they show strongly decreased Fo chlorophyll fluorescence after drying. This desiccation-induced fluorescence loss is rapidly reversible under rehydration. Fluorescence emission from Photosystem II at 685 nm was decreased more strongly by dehydration than 720 nm emission. Reaction centers of Photosystem II lose activity on dehydration and regain it on hydration. Heating of desiccated lichens increased Fo chlorophyll fluorescence. The activation energy for the reversible part of the temperature-dependent fluorescence increase was 0.045 eV, which corresponds to the energy difference between the 680 and 697 nm absorption bands. In desiccated chlorolichens such as Parmelia sulcata, heating induces the appearance of positive variable fluorescence related to the reversible reduction of QA due to overcoming the energy barrier. This is interpreted to provide information on the mechanism of photoprotection: energy is dissipated by changing Chl680 or P680 into a chlorophyll form, which absorbs at 700 nm and emits light at 720 nm (Chl-720 or P680(700)) with a low quantum yield. Dissipation of light energy in this trap is activated by desiccation.  相似文献   

10.
The effect of high temperature (HT) and dehydration on the activity of photosynthetic apparatus and its ability to restore membrane properties, oxygen evolution, and energy distribution upon rehydration were investigated in a resurrection plant, Haberlea rhodopensis. Plants growing under low irradiance in their natural habitat were desiccated to air-dry state at a similar light intensity [about 30 μol(photon) m?2 s?1] under optimal day/night (23/20°C) or high (38/30°C) temperature. Our results showed that HT alone reduced the photosynthetic activity and desiccation of plants at 38°C and it had more detrimental effect compared with desiccation at 23°C. The study on isolated thylakoids demonstrated increased distribution of excitation energy to PSI as a result of the HT treatment, which was enhanced upon the desiccation. It could be related to partial destacking of thylakoid membranes, which was confirmed by electron microscopy data. In addition, the surface charge density of thylakoid membranes isolated from plants desiccated at 38°C was higher in comparison with those at 23°C, which was in agreement with the decreased membrane stacking. Dehydration led to a decrease of amplitudes of oxygen yields and to a loss of the oscillation pattern. Following rehydration, the recovery of CO2 assimilation and fluorescence properties were better when desiccation was performed at optimal temperature compared to high temperature. Rehydration resulted in partial recovery of the amplitudes of flash oxygen yields as well as of population of S0 state in plants desiccated at 23°C. However, it was not observed in plants dehydrated at 38°C.  相似文献   

11.
Upon desiccation of gametophytes of the desiccation-tolerant moss Tortula ruralis preexisting pools of poly(A) RNA (rRNA) remain inact, regardless of the speed at which desiccation is achieved. Preexisting poly(A)+ RNA pools (mRNA) are unaffected by slow desiccation but are substantially reduced during rapid desiccation. Poly(A) RNA involved in protein synthesis is also unaffected by desiccation, whereas the levels of polysomal poly(A)+ RNA in rapid- and slow-dried moss closely reflect the state of the protein synthetic complex in these dried samples.

Poly(A) RNA pools, both total and polysomal, are also stable during the rehydration of both rapid- and slow-dried moss. The total poly(A)+ RNA pool decreases upon rehydration, but this reduction is simply an expression of the normal turnover of poly(A)+ RNA in this moss. Analysis of polysomal fractions during rehydration reveals the continued use of conserved poly(A)+ RNA for protein synthesis. The rate of synthesis of poly(A)+ RNA upon rehydration appears to depend upon the speed at which prior desiccation is administered. Rapidly dried moss synthesizes poly(A)+ RNA at a faster rate, 60 to 120 minutes after the addition of water, than does rehydrated slowly dried moss. Recruitment of this RNA into the protein synthetic complex also follows this pattern. Comparative studies involving the aquatic moss Cratoneuron filicinum are used to gain an insight into the relevance of these findings with respect to the cellular mechanisms associated with desiccation tolerance.

  相似文献   

12.
Desiccation presents a major challenge for the Antarctic midge, Belgica antarctica. In this study, we use proteomic profiling to evaluate protein changes in the larvae elicited by dehydration and rehydration. Larvae were desiccated at 75% relative humidity (RH) for 12 h to achieve a body water loss of 35%, approximately half of the water that can be lost before the larvae succumb to dehydration. To evaluate the rehydration response, larvae were first desiccated, then rehydrated for 6 h at 100% RH and then in water for 6 h. Controls were held continuously at 100% RH. Protein analysis was performed using 2‐DE and nanoscale capillary LC/MS/MS. Twenty‐four identified proteins changed in abundance in response to desiccation: 16 were more abundant and 8 were less abundant; 84% of these proteins were contractile or cytoskeletal proteins. Thirteen rehydration‐regulated proteins were identified: 8 were more abundant and 5 were less abundant, and 69% of these proteins were also contractile or cytoskeletal proteins. Additional proteins responsive to desiccation and rehydration were involved in functions including stress responses, energy metabolism, protein synthesis, glucogenesis and membrane transport. We conclude that the major protein responses elicited by both desiccation and rehydration are linked to body contraction and cytoskeleton rearrangements.  相似文献   

13.
14.

Background and Aims

Haberlea rhodopensis is a perennial, herbaceous, saxicolous, poikilohydric flowering plant that is able to survive desiccation to air-dried state under irradiance below 30 µmol m−2 s−1. However, desiccation at irradiance of 350 µmol m−2 s−1 induced irreversible changes in the photosynthetic apparatus, and mature leaves did not recover after rehydration. The aim here was to establish the causes and mechanisms of irreversible damage of the photosynthetic apparatus due to dehydration at high irradiance, and to elucidate the mechanisms determining recovery.

Methods

Changes in chloroplast structure, CO2 assimilation, chlorophyll fluorescence parameters, fluorescence imaging and the polypeptide patterns during desiccation of Haberlea under medium (100 µmol m−2 s−1; ML) irradiance were compared with those under low (30 µmol m−2 s−1; LL) irradiance.

Key Results

Well-watered plants (control) at 100 µmol m−2 s−1 were not damaged. Plants desiccated at LL or ML had similar rates of water loss. Dehydration at ML decreased the quantum efficiency of photosystem II photochemistry, and particularly the CO2 assimilation rate, more rapidly than at LL. Dehydration induced accumulation of stress proteins in leaves under both LL and ML. Photosynthetic activity and polypeptide composition were completely restored in LL plants after 1 week of rehydration, but changes persisted under ML conditions. Electron microscopy of structural changes in the chloroplast showed that the thylakoid lumen is filled with an electron-dense substance (dense luminal substance, DLS), while the thylakoid membranes are lightly stained. Upon dehydration and rehydration the DLS thinned and disappeared, the time course largely depending on the illumination: whereas DLS persisted during desiccation and started to disappear during late recovery under LL, it disappeared from the onset of dehydration and later was completely lost under ML.

Conclusions

Accumulation of DLS (possibly phenolics) in the thylakoid lumen is demonstrated and is proposed as a mechanism protecting the thylakoid membranes of H. rhodopensis during desiccation and recovery under LL. Disappearance of DLS during desiccation in ML could leave the thylakoid membranes without protection, allowing oxidative damage during dehydration and the initial rehydration, thus preventing recovery of photosynthesis.Key words: Haberlea rhodopensis, resurrection plant, electron microscopy, blue–green fluorescence, chlorophyll fluorescence  相似文献   

15.
In the NE Pacific, Ulvaria obscura is a common component of “green tide” blooms. It is also the only alga known to produce dopamine, which is released into seawater on sunny days when Ulvaria is emersed and then rehydrated. To better understand the mechanisms associated with dopamine release, we experimentally determined whether light quantity and quality, desiccation, temperature, exudates from conspecifics, and dissolved dopamine caused dopamine release. We also examined the effects of desiccation on Ulvaria's ability to photosynthesize, grow, and survive. Desiccation was the only factor that caused significant amounts of dopamine to be lost from U. obscura tissues. The loss of water from Ulvaria tissues was strongly and positively correlated with the loss of dopamine after rehydration. Only 56% of desiccated algae survived for 1 week, compared to 100% of undesiccated control algae. Desiccated algae lost 77% of their pigmented surface area and grew only 15% as much as undesiccated algae, which remained fully pigmented. The oxygen saturation of water containing Ulvaria that was desiccated and then rehydrated was significantly lower than that of seawater containing undesiccated algae. Thus, desiccation, which is coupled with dopamine release, is associated with the deterioration and death of some, but not all, tissues in Ulvaria. Although dopamine released into seawater can reduce the survival or growth of potential competitors, its release is associated with significant physiological stress and tissue mortality. However, the survival and continued growth of some Ulvaria tissues indicates that a net fitness benefit to release dopamine following desiccation cannot be ruled out.  相似文献   

16.
17.
We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non‐volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO2 concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy‐dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non‐volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non‐volatile isoprenoids operate when water deficit is more extreme.  相似文献   

18.
19.
20.
以来自不同水分生境的金发藓和湿地匐灯藓为材料,对二者在脱水与复水胁迫条件下的活性氧代谢、脂质过氧化损伤程度及其抗氧化系统应答的差异进行比较研究。结果显示:在脱水与复水过程中,(1)硅胶快速脱水更接近阳光直射条件下藓类植物的水分丧失。(2)随着含水量的变化,湿地匐灯藓虽然能够在复水后迅速修复细胞的完整性,但变化剧烈;金发藓则能够始终维持较低的膜透性。(3)2种藓类植物的丙二醛(MDA)含量变化均呈先升后降趋势,但金发藓的MDA含量明显低于湿地匐灯藓。(4)2种藓类植物的超氧阴离子自由基(O2.-)产生速率和过氧化氢含量(H2O2)的变化均与MDA含量变化相似,且金发藓活性氧水平明显高于湿地匐灯藓。(5)2种藓类植物的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性受活性氧诱导亦呈先升后降的趋势,但金发藓抗氧化酶对活性氧迸发的应答更快,活性更强。(6)2种藓类植物的抗坏血酸(AsA)含量呈先降后升态势,但金发藓的含量低于湿地匐灯藓。研究表明,来自不同生境的2种藓类植物对脱水胁迫所致的氧化胁迫均具有很强的适应能力,尤其是复水过程中的修复能力,但不同藓类可能通过不同途径和机制来适应脱水所致的氧化胁迫;来自易发生水分亏缺生境的金发藓可能因具有更强抗氧化能力,从而获得比来自水分充沛生境的湿地匐灯藓更高的脱水耐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号