首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non‐volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO2 concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy‐dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non‐volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non‐volatile isoprenoids operate when water deficit is more extreme.  相似文献   

2.
Summary The effect of high temperatures on the photosynthetic apparatus of Preissia quadrata (Scop.) Nees, Conocephalum conicum (L.) Dum. and Marchantia polymorpha L. were investigated. changes in the activities of various photosynthetic reactions were followed by measuring light-dependent oxygen evolution, chlorophyll a fluorescence and light-induced absorbance changes at 518 nm.Mild heat treatment of the thalli led to reversible depression of photosynthesis; the period necessary for complete recovery depended on the extent of heat damage. Irreversible inactivation of photosynthesis after more severe heat stress was caused by damage of photosystem II. On principle, the pattern of reversible and irreversible heat inactivation of photosynthetic reactions in liverwort thalli resembles that observed in leaves of higher plants. However, in contrast to a number of Spermatophyta, exposure of liverwort thalli to high sublethal temperatures did not result in a significant increase in the heat stability of the photosynthetic apparatus indicating that the heat hardening capacity of hygrophytic hepatics is extremely low.  相似文献   

3.
The functional state of the photosynthetic apparatus of flowering homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and subsequent rehydration was investigated in order to characterize some of the mechanisms by which resurrection plants survive drought stress. The changes in the CO2 assimilation rate, chlorophyll fluorescence parameters, thermoluminescence, fluorescence imaging and electrophoretic characteristics of the chloroplast proteins were measured in control, moderately dehydrated (50% water content), desiccated (5% water content) and rehydrated plants. During the first phase of desiccation the net CO2 assimilation decline was influenced by stomatal closure. Further lowering of net CO2 assimilation was caused by both the decrease in stomatal conductance and in the photochemical activity of photosystem II. Severe dehydration caused inhibition of quantum yield of PSII electron transport, disappearance of thermoluminescence B band and mainly charge recombination related to S2QA takes place. The blue and green fluorescence emission in desiccated leaves strongly increased. It could be suggested that unchanged chlorophyll content and amounts of chlorophyll–proteins, reversible modifications in PSII electron transport and enhanced probability for non-radiative energy dissipation as well as increased polyphenolic synthesis during desiccation of Haberlea contribute to drought resistance and fast recovery after rehydration.  相似文献   

4.
Abstract The effect of desiccation on distribution of excitation energy between the two photosystems has been studied in the lichen Cladonia impexa Harm., in the green alga Trebouxia pyriformis Archibald, isolated from Cladonia squamosa; and in the non-lichen green alga Scenedesmus obliquus, strain D3. The method used was to compare the low temperature fluorescence emission of samples equilibrated with air with different humidity prior to freezing in liquid nitrogen. Desiccation of Cladonia and Trebouxia caused a pronounced increase of the height of the far red fluorescence emission band, F 715, over the short wave bands, F685 and F697; the ratio between the two short wave bands remained essentially constant. Upon rewetting, these species regained normal fluorescence emission properties, indicating that they are desiccation-tolerant. Scenedesmus, which was used as a desiccation intolerant species, also showed an increase of the far red fluorescence band over the two short wave bands upon desiccation, but the original fluorescence spectrum was not restored upon rewetting. These results are interpreted as showing that desiccation of tolerant species such as Cladonia and Trebouxia causes a preferential energy distribution into photosystem I. We tentatively believe that desiccation induces conformational changes within the chloroplast thylakoids, thereby controlling distribution of energy between the two photosystems. Furthermore, this change in energy distribution may be of ecological significance as the mechanism by which desiccated lichens or algae avoid photo-dynamic destruction of the photosynthetic apparatus when photosynthesis is inhibited under dry conditions. By a preferential distribution of absorbed energy into photosystem I, the organisms avoid the formation of strong, harmful oxidants in photosystem II when photosynthesis is inhibited. It is suggested that β-carotene associated with the far red-absorbing chlorophyll a fraction of the reaction center antenna of photosystem I is the final sink for excess excitation energy in dry, desiccation-tolerant lichens and algae.  相似文献   

5.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

6.
The effect of high irradiance (HI) during desiccation and subsequent rehydration of the homoiochlorophyllous desiccation-tolerant shade plant Haberlea rhodopensis was investigated. Plants were irradiated with a high quantum fluence rate (HI; 350 μmol m−2 s−1 compared to ca. 30 μmol m−2 s−1 at the natural rock habitat below trees) and subjected either to fast desiccation (tufts dehydrated with naturally occurring thin soil layers) or slow desiccation (tufts planted in pots in peat-soil dehydrated by withholding irrigation). Leaf water content was 5 % of the control after 4 d of fast and 19 d of slow desiccation. Haberlea was very sensitive to HI under all conditions. After 19 d at HI, even in well-watered plants there was a strong reduction of rates of net photosynthesis and transpiration, contents of chlorophyll (Chl) and carotenoids, as well as photosystem 2 activity (detected by the Chl fluorescence ratio RFd). Simultaneously, the blue/red and green/red fluorescence ratios increased considerably suggesting increased synthesis of polyphenolic compounds. Desiccation of plants in HI induced irreversible changes in the photosynthetic apparatus and leaves did not recover after rehydration regardless of fast or slow desiccation. Only young leaves survived desiccation.  相似文献   

7.
The moss Fontinalis antipyretica, an aquatic bryophyte previously described as desiccation-intolerant, is known to survive intermittent desiccation events in Mediterranean rivers. To better understand the mechanisms of desiccation tolerance in this species and to reconcile the apparently conflicting evidence between desiccation tolerance classifications and field observations, gross photosynthesis and chlorophyll a fluorescence were measured in field-desiccated bryophyte tips and in bryophyte tips subjected in the laboratory to slow, fast, and very fast drying followed by either a short (30 min) or prolonged (5 days) recovery. Our results show, for the first time, that the metabolic response of F. antipyretica to desiccation, both under field and laboratory conditions, is consistent with a desiccation-tolerance pattern; however, drying must proceed slowly for the bryophyte to regain its pre-desiccation state following rehydration. In addition, the extent of dehydration was found to influence metabolism whereas the drying rate determined the degree of recovery. Photosystem II (PSII) regulation and structural maintenance may be part of the induced desiccation tolerance mechanism allowing this moss to recover from slow drying. The decrease in the photochemical quenching coefficient (qP) immediately following rehydration may serve to alleviate the effects of excess energy on photosystem I (PSI), while low-level non-photochemical quenching (NPQ) would allow an energy shift enabling recovery subsequent to extended periods of desiccation. The findings were confirmed in field-desiccated samples, whose behavior was similar to that of samples slowly dried in the laboratory.  相似文献   

8.
The gas-exchange characteristics, leaf water potential and chlorophyll (Chl) a fluorescence of oil palm (Elaeis guineensis Jacq.) seedlings subjected to water stress and recovery were investigated in a greenhouse experiment. At 24 days after imposition of stress, leaf water potential in water-stressed seedlings was doubled compared to that of control and there was a drastic decline in gas-exchange parameters viz. photosynthesis, transpiration, and stomatal conductance. Water stress did not irreversibly affect gas-exchange parameters and quantum efficiency of photosystem II, as seedlings exhibited total recovery of photosynthetic apparatus by 12th day of rehydration. These findings indicate that oil palm exhibits physiological plasticity to water stress during the seedling stage.  相似文献   

9.

Background and Aims

Haberlea rhodopensis is a perennial, herbaceous, saxicolous, poikilohydric flowering plant that is able to survive desiccation to air-dried state under irradiance below 30 µmol m−2 s−1. However, desiccation at irradiance of 350 µmol m−2 s−1 induced irreversible changes in the photosynthetic apparatus, and mature leaves did not recover after rehydration. The aim here was to establish the causes and mechanisms of irreversible damage of the photosynthetic apparatus due to dehydration at high irradiance, and to elucidate the mechanisms determining recovery.

Methods

Changes in chloroplast structure, CO2 assimilation, chlorophyll fluorescence parameters, fluorescence imaging and the polypeptide patterns during desiccation of Haberlea under medium (100 µmol m−2 s−1; ML) irradiance were compared with those under low (30 µmol m−2 s−1; LL) irradiance.

Key Results

Well-watered plants (control) at 100 µmol m−2 s−1 were not damaged. Plants desiccated at LL or ML had similar rates of water loss. Dehydration at ML decreased the quantum efficiency of photosystem II photochemistry, and particularly the CO2 assimilation rate, more rapidly than at LL. Dehydration induced accumulation of stress proteins in leaves under both LL and ML. Photosynthetic activity and polypeptide composition were completely restored in LL plants after 1 week of rehydration, but changes persisted under ML conditions. Electron microscopy of structural changes in the chloroplast showed that the thylakoid lumen is filled with an electron-dense substance (dense luminal substance, DLS), while the thylakoid membranes are lightly stained. Upon dehydration and rehydration the DLS thinned and disappeared, the time course largely depending on the illumination: whereas DLS persisted during desiccation and started to disappear during late recovery under LL, it disappeared from the onset of dehydration and later was completely lost under ML.

Conclusions

Accumulation of DLS (possibly phenolics) in the thylakoid lumen is demonstrated and is proposed as a mechanism protecting the thylakoid membranes of H. rhodopensis during desiccation and recovery under LL. Disappearance of DLS during desiccation in ML could leave the thylakoid membranes without protection, allowing oxidative damage during dehydration and the initial rehydration, thus preventing recovery of photosynthesis.Key words: Haberlea rhodopensis, resurrection plant, electron microscopy, blue–green fluorescence, chlorophyll fluorescence  相似文献   

10.
The epiphytic resurrection—or desiccation-tolerant (DT)—fern Pleopeltis polypodioides can survive extreme desiccation and recover physiological activity within hours of rehydration. Yet, how epiphytic DT ferns coordinate between deterioration and recovery of their hydraulic and photosynthetic systems remains poorly understood. We examined the functional status of the leaf vascular system, chlorophyll fluorescence, and photosynthetic rate during desiccation and rehydration of P. polypodioides. Xylem tracheids in the stipe embolized within 3–4 h during dehydration. When the leaf and rhizome received water, tracheids refilled after ∼24 h, which occurred along with dramatic structural changes in the stele. Photosynthetic rate and chlorophyll fluorescence recovered to predesiccation values within 12 h of rehydration, regardless of whether fronds were connected to their rhizome. Our data show that the epiphytic DT fern P. polypodioides can utilize foliar water uptake to rehydrate the leaf mesophyll and recover photosynthesis despite a broken hydraulic connection to the rhizome.  相似文献   

11.
The chlorophyllous spores of Equisetum survive desiccation, yet cannot tolerate this quiescent state for more than ~2 wk. The hypothesis that spore viability of Equisetum hyemale L. is limited by inhibition of photosynthetic recovery was tested using chlorophyll a fluorescence and oxygen-exchange analyses. Experimental spores were desiccated at 2% relative humidity and 25C for time periods of 24 h, 1 wk, and 2 wk, and then rehydrated at 200 mmol photons/m2s (PAR) and 25C for up to 24 h. Spores desiccated for 24 h recovered photosynthetic competence very rapidly during rehydration, reaching the O2 compensation point in 6.3 ~ 0.3 (mean +/- SE) min. Recovery of photosynthetic performance of spores desiccated for 1 wk was slower, as judged by significantly slower increases of (1) photochemical efficiency of photosystem (PS) II, (2) PS II quinoneB-reducing center concentration, (3) quinoneB concentration, (4) water-oxidation activity, (5) rate of light-induced O2 evolution, and (6) apparent quantum yield of net O2 exchange. Photosystem-II and whole-spore photosynthetic competence of 2-wk desiccated spores was increasingly impaired, and did not recover during rehydration. Origin fluorescence yield and dark respiration were not affected by desiccation time following rehydration. The results suggest that the extremely short viability of disseminated spores of Equisetum hyemale is due to the inability to recover losses of water oxidation and photosystem II-core function following 2 wk of desiccation.  相似文献   

12.
The effect of pretreatment with abscisic acid (ABA) on the physiologyof the moss Atrichum androgynum during a desiccation–rehydrationcycle was examined. During rehydration following desiccationfor 16 h, net CO2fixation recovered much more slowly than photosystemII (PSII) activity, conditions conducive to the formation ofreactive oxygen species (ROS) in the photosynthetic apparatus.Pretreatment with ABA increased the rate of recovery of photosynthesisand PSII activity, and also doubled non-photochemical quenching(NPQ). Increased NPQ activity will reduce ROS formation, andmay explain in part how ABA hardens the moss to desiccation.In ABA-pretreated, but not untreated mosses, desiccation significantlyincreased the concentration of soluble sugars. Sugar accumulationmay promote vitrification of the cytoplasm and protect membranesduring desiccation. Starch concentrations in freshly collectedA. androgynum were only approx. 40 mg g-1dry mass; they roseslightly during desiccation but were only slightly affectedby ABA pretreatment. ABA did not reduce chlorophyll breakdownduring desiccation. Copyright 2001 Annals of Botany Company Moss, desiccation, abscisic acid, photosynthesis, chlorophyll fluorescence  相似文献   

13.
J. P. Knox  A. D. Dodge 《Planta》1985,164(1):30-34
Eosin, a known generator of singlet oxygen, applied to leaf discs of Pisum sativum L. sensitized the inhibition of photosynthesis. Analysis of partial photosynthetic electron-transport reactions and of the kinetics of variable chlorophyll fluorescence located the damage at photosystem II. This injury required the presence of oxygen and was also caused by the irradiation of eosin-treated leaf tissue with green light. The role of oxygen and photodynamic reactions in the susceptibility of photosystem II to damage by environmental stresses is discussed.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - PSI photosystem I - PSII photosystem II - 1O2 singlet oxygen - Tricine N-[2-hydroxyl-3,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

14.
Hooijmaijers CA 《Planta》2008,227(6):1301-1310
This study tests the hypothesis that red-leaved gametophytes of the liverwort Jamesoniella colorata (Lehm.) Schiffn., which are found in relatively dry habitats, are more desiccation tolerant than their green counterparts, which are found in moister environments, through superior photoprotective systems. The potential role of red foliar pigments in relation to water deficits is investigated by measuring cell water-relations, oxidative damage and photosynthetic responses. The presence of red pigments, or other cellular constituents, did not affect cell water-relations during dehydration and thus appear not to be involved in cell osmotic regulation. During drying, both colour morphs showed a similar non-photochemical quenching activity and did not experience significant oxidative damage, as measured by the amounts of ascorbate, malondialdehyde and photosynthetic pigments. However, the levels of oxidative damage increased directly upon rewetting the gametophytes, especially in low light conditions (25 μmol m−2 s−1). The efficiency of photosystem II only recovered partially after severe water deficits in both phenotypes. However, the red gametophytes recovered faster and more completely from mild water deficits than did the greens. Moreover, they experienced significantly less photobleaching after rehydration in low light. It is suggested that red pigments and/or carotenoids in these gametophytes improve desiccation tolerance by alleviating photooxidative damage.  相似文献   

15.
In field studies conducted at the Kongsfjord (Spitsbergen) changes of the irradiance in the atmosphere and the sublittoral zone were monitored from the beginning of June until the end of August 1997, to register the minimum and maximum fluxes of ultraviolet and photosynthetically active radiation and to characterise the underwater light climate. Measurements of photosynthesis in three abundant brown algal species (Alaria esculenta, Laminaria saccharina, Saccorhiza dermatodea) were conducted to test whether their photosynthetic performance reflects changing light climate in accordance with depth. Plants sampled at various depths were exposed to controlled fluence rates of photosynthetically active radiation (400–700 nm), UV-A (320–400 nm) and UV-B (280–320 nm). Changes in photosynthetic performance during the treatments were monitored by measuring variable chlorophyll fluorescence of photosystem II. In each species, the degree of inhibition of photosynthesis was related to the original collection depth, i.e. shallow-water isolates were more resistant than plants from deeper waters. The results show that macroalgae acclimate effectively to increasing irradiance levels for both photosynthetically active and ultraviolet radiation. However, the kinetics of acclimation are different within the different species. It is shown that one important strategy to cope with higher irradiance levels in shallow waters is the capability for a faster recovery from high light stress compared to isolates from deeper waters. Received: 13 March 1998 / Accepted: 16 May 1998  相似文献   

16.
* BACKGROUND AND AIMS: The ability of partial dehydration and abscisic acid pretreatments to increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon was tested. * METHODS: Net photosynthesis and respiration were measured using infrared gas analysis during a drying and rehydration cycle. At the same time, the efficiency of photosystem two was measured using chlorophyll fluorescence, and the concentrations of chlorophyll a were spectrophotometrically assayed. Heat production was also measured during a shorter drying and rehydration cycle using differential dark microcalorimetry. * KEY RESULTS: Pretreating lichens by dehydrating them to a relative water content of approx. 0.65 for 3 d, followed by storing thalli hydrated for 1 d in the light, significantly improved their ability to recover net photosynthesis during rehydration after desiccation for 15 but not 30 d. Abscisic acid pretreatment could substitute for partial dehydration. The improved rates of photosynthesis during the rehydration of pretreated material were not accompanied by preservation of photosystem two activity or chlorophyll a concentrations compared with untreated lichens. Partial dehydration and ABA pretreatments appeared to have little direct effect on the desiccation tolerance of the mycobiont, because the bursts of respiration and heat production that occurred during rehydration were similar in control and pretreated lichens. * CONCLUSIONS: Results indicate that the photobiont of P. polydactylon possesses inducible tolerance mechanisms that reduce desiccation-induced damage to carbon fixation, and will therefore improve the supply of carbohydrates to the whole thallus following stress. In this lichen, ABA is involved in signal transduction pathways that increase tolerance of the photobiont.  相似文献   

17.
As the dominant cyanobacterial species in biological soil crusts (BSCs), Microcoleus vaginatus often suffer from many stress conditions, such as desiccation and high temperature. In this study, the activities of light‐harvesting complexes (LHCs) and reaction centers of photosystem II (PS II) in crust cyanobacteria M. vaginatus were monitored under high temperature and desiccation conditions using chlorophyll fluorescence technology. The results showed that all the fluorescence signals were significantly inhibited by high temperature or desiccation treatments. Under high temperature conditions, it was further demonstrated that PS II reaction centers were first destructed within the first hour, then the LHCs gradually dissociated and free phycocyanin formed within 1–5 h, and the activities of all the light harvesting and reaction center pigment proteins were fully suppressed after 24 h of high temperature treatment. Furthermore, the high temperature treated M. vaginatus lost its ability to recover photosynthetic activity. On the contrary, although desiccation also led to the loss of photosynthetic activity in M. vaginatus, after rehydration in the light the fluorescence parameters including Fo, Fv and Fv/Fm could be well recovered within 12 h. It was concluded that desiccation could provide crust cyanobacteria M. vaginatus some protection from other stresses, such as high temperature demonstrated in this experiment. The combine of temperature change and precipitation pattern in the field provide a guarantee for the alternate metabolism and inactivity in crust cyanobacteria. That may be a very important strategy for the survival of crust cyanobacteria in high temperature regions.  相似文献   

18.
The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light‐harvesting complexes and interrupted access to plastoquinone. This well‐ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production.  相似文献   

19.
Sites of photoinhibition and photo-oxidative damage to the photosynthetic electrontransport system of the unicellular cyanobacterium Microcystis aeruginosa were identified by studies of the kinetics of chlorophyll fluorescence induction by whole cells at room temperature and from partial photosynthetic electron-transport reactions in vitro in thylakoid preparations. Chlorophyll fluorescence intensity decreased following photoinhibitory light treatment. This was attributed to decreases both in the activity of photosystem II and in electron flow through the primary electron acceptor, Q. This inhibition was only partially reversed over a 50-min dark recovery period. Partial photosynthetic electron-transport experiments in vitro demonstrated that photosystem I was not affected by the photoinhibitory treatment. Light damage was associated exclusively with the light reactions, of photosystem II, at a site close to the reaction centre, between the site where diphenylcarbazide can donate electrons and the site where silicomolybdate can accept electrons. This damage presumably reduced production of ATP by noncyclic photophosphorylation and production of NADPH by photosystem I, decreasing the availability of these co-factors for reducing CO2 in the dark reactions of photosynthesis. The importance of these findings is discussed.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPC diphenylcarbazide - PSI photosystem I - PSH photosystem II  相似文献   

20.
The functional peculiarities and responses of the photosynthetic system in the flowering homoiochlorophyllous desiccation-tolerant (HDT) Haberlea rhodopensis and the non-desiccation-tolerant spinach were compared during desiccation and rehydration. Increasing rate of water loss clearly modifies the kinetic parameters of fluorescence induction, thermoluminescence emission, far-red induced P700 oxidation and oxygen evolution in the leaves of both species. The values of these parameters returned nearly to the control level after 24 h rehydration only of the leaves of HDT plant. PS II was converted in a non-functional state in desiccated spinach in accordance with the changes in membrane permeability, malondialdehyde, proline and H2O2 contents. Moreover, our data showed a strong reduction of the total number of PS II centers in Haberlea without any changes in the energetics of the charge recombination. We consider this observation, together with the previously reported unusually high temperature of B-band (S2QB-) emission of Haberlea to reflect some specific adaptive characteristics of the photosynthetic system. As far as we know this is the first time when such adaptive characteristics and mechanism of the photosynthetic system of a flowering HDT higher plant is described. These features of Haberlea can explain the fast recovery of its photosynthesis after desiccation, which enable this HDT plant to rapidly take advantage of frequent changes in water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号