首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
This study aimed to evaluate the antioxidant activities of a cultured medicinal fungus--Armillariella mellea (Vahl. ex Fr.) Karst. (AM). Three antioxidant assay systems, namely cytochrome c, xanthine oxidase inhibition and FeCl2-ascorbic acid stimulated lipid peroxidation in rat tissue homogenate tests, were used. Total flavonoid and phenol contents of AM extracts were also analyzed. Results showed that both aqueous (AM-H2O) and ethanolic (AM-EtOH) extracts of solid state cultured AM showed antioxidant activities in a concentration-dependent manner. At concentrations 1-100 microg/ml, the free radical scavenging activity was 73.7-92.1% for AM-H2O, and 60.0-90.8% for AM-EtOH. These extracts also showed an inhibitory effect on xanthine oxidase activity, but with a lesser potency (IC50 - 9.17 microg/ml for AM-H2O and 7.48 microg/ml for AM-EtOH). In general, AM-H2O showed a stronger anti-lipid peroxidation activity on different rat's tissues than AM-EtOH. However, both AM extracts displayed a weak inhibitory effect on lipid peroxidation in plasma. Interestingly, the anti-lipid peroxidation activity of AM-H2O (IC50 - 6.66 microg/ml) in brain homogenate was as good as alpha-tocopherol (IC50 - 5.42 microg/ml). AM-H2O (80.0 mg/g) possessed a significant higher concentration of total flavonoids than AM-EtOH (30.0 mg/g), whereas no difference was noted in the total phenol content between these two extracts. These results conclude that AM extracts possess potent free radical scavenging and anti-lipid peroxidation activities, especially the AM-H20 in the brain homogenate.  相似文献   

2.
Liquid chromatography-electrospray ionization mass spectrometry methods are described for the simultaneous quantification of a bis-thiazolium compound (T3), its related prodrug (TE3) and an intermediate compound (mTE3) that appeared during the prodrug/drug conversion process, in human plasma, whole blood and red blood cells (RBCs). The methods involve solid phase extraction (SPE) of the compounds and the internal standard (verapamil) from the three different matrices using OasisHLB columns with an elution solvent of 2x1 ml of acetonitrile containing 1 ml/l trifluoroacetic acid (TFA). HPLC separation was performed on a C18 encapped Xterra column packed with 3.5 microm particles. The mobile phase used a 8 min gradient, from water containing 1 ml/l TFA to acetonitrile containing 1 ml/l TFA, at a flow rate of 400 microl/min. Verapamil and the TE3 compound were characterized by the protonated molecules at m/z 455 and m/z 541, respectively. The mTE3 species was detected through the (M)+ ion at m/z 497. The T3 compound was detected by use of two ions, the quaternary ammonium salt (M2+/2) at m/z 227.3 and by the adduct with TFA (M+TFA)+ at m/z 567.3. The drug/internal standard peak area ratios were linked via a quadratic relationship to plasma (or whole blood) concentrations in the tested range of 6.4-1282 microg/l (12.8-2564 microg/kg) for T3, 20-2000 microg/l (40-4000 microg/kg) for mTE3 and 10-2000 microg/l (40-4000 microg/kg) for TE3, and to T3 concentrations in RBCs ranging from 12.8 to 2564 microg/kg. Inter-assay precision (in terms of R.S.D.) was below 13.5% and accuracy ranged from 95.4 to 107%. The dilution of the samples (plasma or whole blood) has no influence on the performance of the methods. The extraction recoveries averaged 87% for T3, 53% for mTE3 and 79% for TE3 in plasma; 79% for T3, 57% for mTE3 and 65% for TE3 in blood; and 93% for T3 in RBCs, and was constant across the calibration range. The lower limits of quantitation were 6.4 microg/l for T3, 20 microg/l for mTE3 and 10 microg/l for TE3 in plasma; 12.8 microg/kg for T3 and 40 microg/kg for mTE3 and TE3 in blood; and 12.8 microg/kg for T3 in RBCs. Stability tests under various conditions were also investigated. The three-step SPE procedure (loading, clean-up, and elution) described in this paper to quantify these new anti-malarial compounds in plasma, whole blood and RBCs, can easily be automated by using either robotisation or an automated sample preparation system.  相似文献   

3.
A new high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) assay for cediranib, a tyrosine kinase inhibitor for VEGFRs, was developed and validated, for the determination of plasma and brain levels of cediranib in small specimen volumes. Tyrphostin (AG1478) was used as internal standard. Mouse plasma and brain homogenate samples were prepared using liquid-liquid extraction. The assay was validated for a 2.5-2500 ng/mL concentration range for plasma, and for 1-2000 ng/mL range for brain homogenate. For these calibration ranges, within-assay variabilities were 1.1-14.3% for plasma and 1.5-9.4% for brain homogenate; between-assay variabilities were 2.4-9.2% for plasma, and 4.9-10.2% for brain homogenate. Overall accuracy ranged from 101.5 to 107.0% for plasma and 96.5 to 100.2% for brain homogenate, for all target concentrations. The developed assay has been successfully applied for a brain distribution study in mice at an oral dose of 5 mg/kg.  相似文献   

4.
3'-Azido-2',3'-dideoxyuridine (AZDU) is a nucleoside analog structurally similar to zidovudine (AZT) with proven activity against human immunodeficiency virus (HIV). The purpose of this study was to develop and validate a high-performance liquid chromatographic (HPLC) method to quantitatively determine AZDU and its novel prodrugs in rat plasma simultaneously. A reversed-phase gradient elution HPLC method was developed to quantitate AZDU and its prodrugs, N3-pivaloyloxymethyl-3'-azido-2',3'-dideoxyuridine (I), 5'-pivaloyloxymethyl-3'-azido-2',3'-dideoxyuridine (II), 5'-O-valinyl-3'-azido-2',3'-dideoxyuridine hydrochloride (III) and 5'-O-phenylalanyl-3'-azido-2',3'-dideoxyuridine hydrochloride (IV), in rat plasma. AZDU and its prodrugs were analyzed using an octadecyl silane column with a mobile phase consisting of 0.04 microM sodium acetate buffer, pH 5.0, and acetonitrile, running in a segmented gradient manner at a flow rate of 2 ml/min. Acetonitrile was increased from 10 to 50% during the first 8 min by 5% per min, followed by 10% per min until it reached 90% acetonitrile. 3'-Azido-2',3'-dideoxy-5-ethyluridine (CS-85) was used as an internal standard (25 microg/ml). Compounds were detected by UV absorption at 261 nm. Extraction recoveries for all compounds were greater than 80%. Retention times of AZDU, CS-85, prodrugs I, II, III and IV were 3.3, 5.2, 9.1, 8.8, 6.3 and 7.3 min, respectively. Calibration plots were linear over the range of 0.25-100 microg/ml for AZDU and prodrugs II, III, and IV and 0.5-100 microg/ml for prodrug I. The limit of quantitation was 0.25 microg/ml for prodrugs II, III and IV and 0.5 microg/ml for prodrug I. The intra- and inter-day variations were less than 10% and accuracies were greater than 90%. This method is rapid, sensitive and reproducible for the determination of AZDU and prodrugs in rat plasma.  相似文献   

5.
A simple, sensitive and robust liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for quantification of chlorpromazine in rat plasma and brain tissue. Chlorpromazine was extracted from rat plasma and brain homogenate using liquid-liquid extraction. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/20 mM ammonium formate (pH 4.25 adjusted with formic acid) with gradient elution. Chlorpromazine was detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. The LLOQ was 0.2 ng/ml for plasma and 0.833 ng/g for brain tissue. The method was linear over the concentration range from 0.2 to 200.0 ng/ml for plasma and from 0.833 to 833.3 ng/g for brain tissue. The correlation coefficient (R(2)) values were more than 0.998 for both plasma and brain homogenate. The precision and accuracy for intra-day and inter-day were better than 7.54%. The relative and absolute recovery was above 84.9% and matrix effects were lower than 5.6%. This validated method has been successfully used to quantify the rat plasma and brain tissue concentration of chlorpromazine after chronic treatment.  相似文献   

6.
Deltamethrin (DLM), [(S)-alpha-cyano-d-phenoxybenzyl-(1R,3R)-e-(2,2 dibromovinyl)-2,2-dimethylcyclo-propane-1-carboxylate], is a pyrethroid insecticide widely used in agriculture and households. There are several methods for analysis of DLM in biological fluids and tissues, but these methods are time consuming. They generally involve the extraction of DLM with lipid-soluble solvents such as n-pentane, n-hexane, diethylether or acetone, and subsequent evaporation of the solvent. A more rapid and sensitive high-performance liquid chromatography (HPLC) method to analyze DLM in plasma and tissues (liver, kidney, and brain) was developed and validated according to U.S. Food and Drug Administration (U.S. FDA) and International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. The limit of detection (S/N of 3/1) for DLM was 0.01 microg/ml for plasma, liver, kidney and brain. The method performances were shown to be selective for DLM and linear over the concentration range 0.01-20.0 microg/ml. For five replications of samples at 0.05, 0.1, 0.2, 1.5 and 4.0 microg/ml, intraday precision and accuracy values were in the range of 0.7-13.1% relative standard deviation (%R.S.D.) and 1.8-14.1%Error, respectively. Interday (n = 15) precision and accuracy values at 0.05, 0.1, 0.2, 1.5, and 4.0 microg/ml were in the range of 3.2-15.2% (%R.S.D.) and 3.7-14.8%Error, respectively. The absolute recoveries of DLM ranged from 93 to 103% for plasma, 95 to 114% for liver, 97 to 108% for kidney, and 95 to 108% for brain. This method can be quite useful for DLM pharmacokinetic and tissue distribution studies, for which multiple plasma and tissue samples have to be analyzed quickly with high reproducibility.  相似文献   

7.
To evaluate if pulmonary delivery of microparticles loaded with a prodrug of isoniazid (INH), isoniazid methanesulfonate (INHMS), can target alveolar macrophages (AM) and reduce metabolism of INH, an HPLC-MS/MS assay with automated online extraction for quantification of INH and its metabolite acetylisoniazid (AcINH) in plasma and AMs was developed and validated. Reproducibility in rat plasma and homogenate of a rat AM cell line, NR8383, for INH and AcINH showed excellent precision and accuracy with calibration curves exhibiting linearity within a range of 1-250ng/ml of INH and 0.05-50ng/ml of AcINH (r(2)>0.99). The validated methods were successfully applied to pharmacokinetic study of INHMS-loaded microparticles in rats, demonstrating efficient targeting of AMs and reduction of INH metabolism.  相似文献   

8.
A high-performance liquid chromatography (HPLC) method was developed to measure levels of d-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (d-threo-PPMP) in mouse plasma and liver. d-threo-PPMP was measured by HPLC with a Luna Pheny-Hexyl column (5 microm, 250 mm x 4.6 mm) employing UV detection at 210 nm using a mobile phase of potassium phosphate buffer (20mM, pH 3.0)-acetonitrile in a 45:55 (v/v) ratio. d-threo-1-phenyl-2-pentadecanoylamino-3-morpholino-1-propanol (PC15MP) was employed as an internal standard (IS). The lower limit of quantitation (LLOQ) was 0.3 microg/ml. The assay was linear over a concentration range of 0.3-10 microg/ml, with acceptable precision and accuracy. Assayed in plasma, the intra- and inter-day validation for all coefficients of variation (R.S.D.%) were found less than 15%. The method was applied to samples from athymic (nu/nu) mice treated with d-threo-PPMP by intraperitoneal injection. d-threo-PPMP levels of approximately 10-20 microg/ml ( approximately 20-40 microM) in plasma and approximately 45 microg/g in liver were obtained. The present method can be used to quantify d-threo-PPMP in mice for bioavailability and dose-response studies.  相似文献   

9.
A high-performance liquid chromatographic method was developed for the determination of a chemoprotective agent, 2-(allylthio)pyrazine (I), in human plasma and urine, and in rat blood and tissue homogenate using diazepam as an internal standard. The sample preparation was simple; 2.5 volumes of acetonitrile were added to the biological sample to deproteinize it. A 50–100 μl aliquot of the supernatant was injected onto a C18 reversed-phase column. The mobile phase employed was acetonitrile–water (55:45, v/v), and it was run at a flow-rate of 1.5 ml/min. The column effluent was monitored using an ultraviolet detector at 330 nm. The retention times for I and the internal standard were 4.0 and 5.1 min, respectively. The detection limits of I in human plasma and urine, and in rat tissue homogenate (including blood) were 20, 20 and 50 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 6.1%) in a concentration range from 0.02 to 10 μg/ml for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

10.
20 (R,S)-Ginsenoside-Rg2, an anti-shock agent, is prescribed as a racemate. To analyze simultaneously the enantiomers of 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2 in plasma, a simple and reproducible high-performance liquid chromatographic (HPLC) method has been developed. The enantiomeric separation and determination were successfully achieved using a Diamonsil ODS C18 reversed-phase column (5 microm, 250 mm x 4.6 mm) with an RP18 (5 microm) guard column and a mobile phase of MeOH-aq. 4% H3PO4 (65:35, v/v, pH 5.1) with UV detection at 203 nm. Both enantiomers, 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2, were well separated at 14.5 min and 13.6 min, respectively. The linear ranges of the standard curves were 2.0-250 microg/ml. The intra- and inter-day precision (R.S.D.) were 相似文献   

11.
Paclitaxel is an anticancer agent extracted from the bark of the yew tree and is widely used in chemotherapy for solid tumors, including non-small cell lung cancer and ovarian carcinoma. Most assays to measure paclitaxel in plasma require a large amount of sample (0.4-1 ml) to achieve the necessary sensitivity, and are not suitable when only small sample sizes are available. To circumvent this latter limitation, we developed a sensitive liquid chromatography-mass spectrometry (LC-MS) method for the determination of paclitaxel in plasma based on the use of small sample volumes (50 microl plasma). A solid phase extraction procedure was employed that enabled the eluent to be directly injected onto a reversed phase chromatographic HPLC system using positive electrospray ionization followed by mass spectrometric detection. The extraction recoveries of paclitaxel were 98 and 83% from plasma and brain tissues, respectively. The mobile phase consisted of 50% acetonitrile in 0.1% formic acid that was pumped at 0.2 ml/min to yield a retention time for paclitaxel of 6.2 and 5.4 min for cephalomannine, the internal standard. The method has been validated at paclitaxel plasma concentrations from 0.036 to 9.9 microg/ml, and from 0.054 to 1.96 microg/ml in brain homogenates. A sensitive and specific assay for paclitaxel has been developed that has the advantages of using small sample sizes, and a single extraction step without solvent evaporation.  相似文献   

12.
Hong Z  Fan G  Chai Y  Yin X  Wu Y 《Chirality》2005,17(5):293-296
Tetrahydropalmatine (THP) is a biologically active ingredient isolated from a traditional Chinese herb Rhizoma corydalis (yanhusuo). THP is a racemic mixture which contains 50% of the (+) and 50% of (-) enantiomer. The (-) enantiomer accounts for most of the analgesic effects. Plasma concentrations of THP enantiomers were analyzed by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OJ column with quantification by UV at 230 nm. The method was used to determine the pharmacokinetics of THP enantiomers in rats and dogs after oral administration of rac-THP or (-)-THP. The pharmacokinetic profiles of the two enantiomers after dosing with rac-THP were significantly different both in rats and dogs. The mean C(max) and AUC(0-infinity) values in rats were 1.93 +/- 0.36 microg/ml and 6.65 +/- 2.34 microg x h/ml for the (-) enantiomer, and 1.11 +/- 0.25 microg/ml and 2.03 +/- 0.45 microg x h/ml for the (+) enantiomer. The mean C(max) and AUC(0-infinity) in dogs were 1.60 +/- 0.81 microg/ml and 9.88 +/- 2.58 microg x h/ml for the (-) enantiomer, while 0.36 +/- 0.21 microg/ml and 1.22 +/- 0.40 microg x h/ml for the (+) enantiomer. rac-THP at 40 mg/kg and (-)-THP at 20 mg/kg had very similar plasma concentration-time profiles, and C(max), AUC(0-infinity), and t(1/2) of the (-) enantiomer in both rats and dogs, indicating that the two treatments were equivalent with respect to the pharmacokinetic properties of the (-) enantiomer.  相似文献   

13.
A method for the simultaneous determination of sulfadiazine and trimethoprim in plasma from Beagle dogs was developed and validated. Samples were deproteinized with acetonitrile and extracted with ethyl acetate. Sulfachloropyridazine and ormethoprim were used as internal standards for the sulfadiazine and trimethoprim analysis, respectively. The chromatography was carried out both on an LC-UV (liquid chromatography-ultraviolet detection) and ion-trap LC-MS(n) (liquid chromatography-mass spectrometric detection) instrument, operating in the positive APCI mode (atmospheric pressure chemical ionization). The purpose of this work was to compare the quantification results of both methods. Both the LC-UV and LC-MS-MS methods were validated for their linearity, accuracy, precision, limit of detection and limit of quantification, according to the requirements defined by the European Community. Calibration curves using plasma fortified between 0.1 and 1 microg/ml of sulfadiazine, 0.1 and 2 microg/ml of trimethoprim, 1 and 20 microg/ml of sulfadiazine showed a good linear correlation (r> or =0.9990, goodness-of-fit< or =8.4%). The results for the accuracy and precision at 1 microg/ml of sulfadiazine and trimethoprim and at 20 microg/ml of sulfadiazine fell within the ranges specified. The limits of quantification of both methods were 0.1 microg/ml. The limits of detection were 0.019 microg/ml of sulfadiazine and 0.024 microg/ml of trimethoprim for the LC-UV method, and 0.020 microg/ml of sulfadiazine and 0.062 microg/ml of trimethoprim for the LC-MS-MS method. The methods have been successfully applied in a pharmacokinetic study to determine the drug concentrations in plasma samples from dogs. A good correlation between the results of both methods was observed (R=0.9724, slope=1.0239, intercept=-0.2080 microg/ml for sulfadiazine and R=0.9357, slope=1.0433, intercept=0.0325 microg/ml for trimethoprim). The precision of both methods was also tested on the results of the same samples using an F-test (alpha=0.05), indicating that both methods did not differ in precision.  相似文献   

14.
N-acetyl-1-(p-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivative (PS3Ac) has been determined in brain tissues by high performance liquid chromatography (HPLC) coupled with a diode array detection. In a previous paper we presented a validation method for detecting PS3Ac and its metabolites in plasma samples after intraperitoneal administration to Wistar rats. In the present paper, we report the results of the determination of PS3Ac and its N-deacetyl (PS3) and O-demethyl (PS3OH) metabolites, in the brain after extraction based on a polymeric matrix with a high hydrophilic-lipophilic balance, using Oasis cartridges. The chromatographic separation was performed in an octadecylsilica stationary phase at 25 degrees C using a mixture of 10 mM potassium dihydrogen orthophosphate (pH 2.24) and acetonitrile in ratio of 30:70 (v/v) as mobile phase, with a flow rate of 0.8 ml/min. The method exhibited a large linear range from 0.05 to 2 microg/ml for all studied compounds (n=6). In the within-day assay (n=4), the accuracy ranged from 87.5% determined with 0.05 microg/ml of PS3 to 110.1% determined with 0.2 microg/ml of PS3OH. In the between-day assay the coefficient of variation ranged from 2.4 determined with 0.05 microg/ml of PS3 to 9.7 determined with 0.2 microg/ml of PS3OH. The extraction efficiency ranged from 77.8% for PS3OH at 0.2 microg/ml to 94.3 for PS3Ac at 0.5 microg/ml. The limit of detection for all the tetrahydroisoquinoline derivatives ranged around 50 ng/ml. The method proved to be highly sensitive and specific to determinate PS3Ac and its metabolites and has been successfully applied to value their concentrations in brain matrix over the time.  相似文献   

15.
A fast and selective HPLC-MS-MS method was established to determine L-threonate in human plasma and urine. Plasma and urine samples were extracted by protein precipitation and diluted with water, then chromatographed on an YMC J'Sphere C(18) column with methanol-acetonitrile-10mM ammonium acetate (20:5:75, v/v) as mobile phase, and at a flow rate of 0.2 ml/min. Detection was performed on a triple-quadrupole tandem mass spectrometer using negative electrospray ionization (ESI). Multiple reactions monitoring (MRM) was used and L-threonate was quantified by monitoring the ion transition of m/z 134.5-->74.7. The linear calibration curves of L-threonate in plasma and urine were obtained over the concentration range of 0.25-50 microg/ml and 2.5-500 microg/ml, respectively. Lower limit of quantitation was 0.25 and 2.5 microg/ml, respectively. Accuracy was within 85-115%, and intra- and inter-batch precision (R.S.D.%) were within +/-15%. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of L-threonate in Chinese healthy subjects.  相似文献   

16.
Thalidomide is a racemate with potentially different pharmacokinetics and pharmacodynamics of the component (+)-(R)- and (-)-(S)-thalidomide enantiomers. As part of a project on the adjunctive effects of thalidomide and cytotoxic agents, a method for the chiral separation and quantitation of thalidomide was developed and validated. Thalidomide in relevant serum and tissue homogenate samples was stabilized by buffering with an equal volume of citrate-phosphate buffer (pH 2, 0.2M), and stored at -80 degrees C pending assay. The thalidomide enantiomers, extracted from the samples with diethyl ether, were well separated on a chiral HPLC column of vancomycin stationary phase and a mobile phase of 14% acetonitrile in 20 mM ammonium formate adjusted to pH 5.4; their concentrations were determined with phenacetin as internal standard at 220 nm detection. Over a thalidomide concentration range of 0.1-20 microg/ml, assay precision was 1-5% (CV) for both enantiomers, and calibration curves were linear with all correlation coefficients being >0.99. The estimated limit of quantification for both enantiomers was 0.05 microg/ml with 0.2-0.6 ml serum samples. Thalidomide in rat and human serum, acidified and stored as described above, was found to be chemically and chirally stable over 1 year. The method has been successfully applied to serum samples from human patients undergoing thalidomide treatment for mesothelioma, and to serum, blood and tissue samples from a laboratory rodent model using transplanted 9l gliosarcoma. Enantioselectivity in thalidomide pharmacokinetics has been found, thereby reinforcing the need for considering the relevance of chirality in thalidomide pharmacology.  相似文献   

17.
Chicken liver plasma membranes, minimally contaminated with Golgi apparatus-derived vesicles, were prepared from a low-speed (400 g) pellet by means of flotation in isotonic Percoll solution, followed by a hypotonic wash and flotation in a discontinuous sucrose gradient. Based on the analysis of suitable marker enzymes, alkaline phosphatase and alkaline phosphodiesterase, two plasma membrane fractions were isolated with enrichments, depending on the equilibrium density and marker of 28-97 and with a total yield of 4-5%. Golgi apparatus fractions were prepared by flotation of microsomes, obtained from the same homogenate as the low-speed pellet, in a discontinuous sucrose gradient. The trans-Golgi marker galactosyltransferase was 27-fold enriched in a fraction of intermediate density (d=1.077-1.116 g/ml). Approximately 12% of galactosyltransferase was recovered in the membranes equilibrating d=1.031-1.148 g/ml. Contamination with plasma membrane fragments was low in the light (d=1.031-1.077 g/ml) and intermediate density Golgi vesicles. The isolation of purified plasma membranes and Golgi vesicles from one liver homogenate will enable future studies on receptor cycling between these cell organelles.  相似文献   

18.
Aripiprazole is a novel antipsychotic drug for the treatment of schizophrenia and schizoaffective disorders. In this study, a new method using gas chromatography-mass spectrometry (GC-MS) was developed and validated for the detection of aripiprazole and its main metabolite, dehydroaripiprazole, in plasma. Blood samples from seven psychiatric patients treated with aripiprazole (10-20 mg/day) underwent a solid-phase extraction (SPE) and N-methyl-N-trimethylsilytrifluoroacetamide (MSTFA) derivatization. The characteristic ions of mass spectra for aripiprazole and dehydroaripiprazole were m/z 306, 292, 218 and 304, 290, 218, respectively. Extraction recoveries from this method were 75.4% (n=5) for aripiprazole and 102.3% (n=5) for dehydroaripiprazole. The calibration curves of aripiprazole and dehydroaripiprazole were linear from 16 to 500 ng/ml (r(2)=0.999) and 8 to 250 ng/ml (r(2)=0.999), respectively. The respective limits of quantification (LOQs) for aripiprazole and dehydroaripiprazole evaluated in 0.5 ml of serum were 14.4 ng/ml and 6.9 ng/ml. Intra-assay and interassay precision and accuracy were within acceptable ranges. In this study, we also found that the mean trough concentrations in plasma at steady-state were 128.9 microg/l for aripiprazole and 30.1 microg/l for dehydroaripiprazole.  相似文献   

19.
We present a specific method for the determination of disodium clodronate in human plasma and urine using a gas-chromatographic system with nitrogen phosphorus detector (NPD). The compound was extracted from plasma and urine samples by an anion-exchange resin and derivatizated with bistrimethylsilyltrifluoroacetamide (BSTFA). Sodium bromobisphosphonate was used as internal standard. The calibration curves were linear in both plasma and urine, with a regression coefficient r > 0.9975 in plasma and r > 0.9977 in urine.The limit of quantitation was 0.3 microg/ml in plasma and 0.5 microg/ml in urine. The method was validated by intra-day assays at three concentration levels. During the study we carried out inter-day assays to confirm the feasibility of the method. The precision in plasma at 0.5, 15, and 45 microg/ml was 12.4, 0.2, and 6.5% (n = 40), respectively; in urine at 0.8, 8, and 40 microg/ml it was 8.6, 6.4, and 9.3% (n = 40), respectively.The method was accurate and reproducible, and was successfully applied to determine the pharmacokinetic parameters of clodronate in healthy volunteers after intravenous infusion and intramuscular injection of 200 mg of the compound. The Cmax after intravenous infusion and intramuscular injection was 16.1 and 12.8 microg/ml, respectively. AUC(0-48 h) after infusion administration and intramuscular injection was 44.2 +/- 18.0 and 47.5 +/- 12.4 h microg/ml, respectively. The elimination half-life in both administrations was 6.31 +/- 2.7 h.  相似文献   

20.
Recently a novel class of non-competitive AMPA receptor (AMPAR) antagonists, such as, N-acetyl-1-(p-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (PS3Ac) have been developed using molecular modeling studies. In this study we present a validated method for detecting PS3Ac in biological matrices by high performance liquid chromatography with ultraviolet detection. In this study PS3Ac was administered to Wistar rats. After intraperitoneal administration, the plasma concentrations of PS3Ac and its potential metabolic products, i.e., PS3OH, PS3 and PS3OHAc were determined. Serum samples (0.5 ml) were purified by solid-phase extraction of analytes using Oasis cartridges. The chromatographic separation was performed on a LiChrosorb RP-1 at 30 degrees C. The eluent was made of potassium dihydrogen phosphate/acetonitrile in ratio of 50:50 (v/v); the flow rate was 1 ml/min. The detection was performed at 220 nm. The method exhibited a large linear range from 0.05 to 5 microg/ml for all studied compounds. The intra-assay accuracy ranged from 92% determined at 0.1 microg/ml of PS3OH, to 108% determined at 0.05 microg/ml of PS3OHAc. The average coefficient of variation of inter-assay was 6.27%. The average recovery from plasma was 78.5%. The limits of quantification for all the tetrahydroisoquinoline derivatives was 20 ng. The method proved to be highly sensitive and specific for the determination of the studied compounds in rat plasma and has been successfully applied to the evaluation of the pharmacokinetic profile of the inoculated compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号