首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For NAD-malic enzyme (NAD-ME)-type C4 photosynthesis, two types of aspartate aminotransferase (AAT) are involved. We examined the expression pattern of the Panicum miliaceum mitochondrial Aat gene (PmAat) and P. miliaceum cytosolic Aat gene (PcAat) in transgenic rice plants, which were specifically expressed in bundle sheath cells (BSCs) and mesophyll cells (MCs), respectively. Expression of a beta-glucuronidase (GUS) reporter gene under the control of the PcAat promoter was regulated in an organ-preferential and light-dependent manner in the transgenic rice plants. However, the PmAat promoter drove the GUS expression in all organs we tested without light dependency, and this non-preferential expression pattern was also observed in transgenic rice with introduction of the intact PmAat gene. The expression patterns of the rice counterpart Aat genes to PmAat or PcAat showed that the rice mitochondrial Aat (RmAat1) gene was expressed in all organs tested in a light-independent manner, while expression of the rice cytosolic Aat (RcAat1) gene showed an organ-preferential and light-dependent pattern. Taking these results together, we can generalize that the regulatory system of BSC-specific or light-dependent expression of mitochondrial Aat is not shared between P. miliaceum (C4) and rice (C3) and that the expression of the C4 genes introduced into rice mimics that of their counterpart genes in rice.  相似文献   

2.
The promoter region from the rice sucrose synthase-1 gene (RSs1)was fused with coding sequences for ß-glucuronidase(GUS) and snowdrop (Galanthus nivalis) lectin (GNA). Tobaccoplants were transformed with these chimaenc genes in order todetermine the expression pattern directed by the RSs1 promoter.Histochemical and immunochemical assays demonstrated that theexpression of both GUS and GNA was restricted to phloem tissue,and was not observed in any other tissues. This phloem-specificexpression pattern was consistent in stem, leaf and root, andin different transgenic plants. Chimaeric genes of RSs 1-GUSand RSs1 GNA were stably inherited in T1 plants. In addition,GNA was detected by immunological assay in the honeydew producedby peach potato aphids (Myzus persicae) feeding on RSs1-GNAtransgenic tobacco plants. This provided direct evidence thatGNA was not only expressed in the phloem tissue, but was alsopresent in the phloem sap of transgenic tobacco plants. TheRSs1 promoter can thus be used to direct expression of an insecticidalprotein, such as GNA, in transgenic plants to control phloemsap-feeding insect pests. Key words: Rice sucrose synthase-1 promoter, phloemspecific, transgenic plants, ß-glucuronidase, Galanthus nivalis agglutinin, gene expression  相似文献   

3.
4.
Cytochrome monooxygenase P450s (CYPs) comprise one of the largest enzyme families in plants. Some P450s are involved in xenobiotic metabolism: they confer herbicide tolerance and are induced by chemical treatments. We isolated a novel P450 cDNA, CYP72A21 (accession number, AB237166), from rice (Oryza sativa L. cv. Nipponbare) seedlings treated with a mixture of 2,4-dichlorophenoxyacetic acid (2,4-D), chlorotoluron, phenobarbital, salicylic acid, and naphthalic anhydride (each 100 μM). We also isolated the gene’s promoter region. Endogenous CYP72A21 expression in rice seedlings treated with 2,4-D, herbicides esprocarb, or trifluralin was increased in the aerial part of seedlings. An expression plasmid, pI21pg, containing the GUS gene under the control of the CYP72A21 promoter was introduced into rice plants. GUS was expressed constitutively in roots, but this expression was suppressed by 2,4-D treatment. 2,4-D and other auxins induced GUS expression effectively in the stem and leaves. Histological observation revealed that GUS was expressed mainly in the base of the stem. Treatment with the herbicides acetochlor, esprocarb, and propyzamide induced GUS expression in the aerial parts of the seedlings. The CYP72A21 promoter was highly responsive to treatments with various chemicals, and thus might be useful for producing transgenic plants for biomonitoring of environmental chemicals.  相似文献   

5.
OsGSTL1 gene was isolated from the rice genomic library. Semi-quantitative RT-PCR analysis demonstrated that the expression of the OsGSTL1 in rice was not induced by chlorsulfuron, ethylene, abscisic acid, salicylic acid, and methyl jasmonate. In order to investigate the cis-elements of OsGSTL1 promoter, the promoter regions with different lengths were fused to the β-glucuronidase (GUS) reporter gene. All constructs were transformed into onion epidermal cells or A. thaliana plants to detect the expression patterns. In onion epidermal cells, the 160 bp fragment and longer ones were functional for directing GUS expression. In transgenic A. thaliana, the 2?155 bp upstream region of OsGSTL1 gene directed the GUS expression only in cotyledon after germination, but not in the root of young seedlings. In the later seedling, the 2?155 bp upstream region of OsGSTL1 gene directed GUS expression in roots, stems, and leaves. However, the GUS gene directed by a 1?224 bp upstream fragment is expressed in all the checked tissues. These results suggest that the spatiotemporal expression response elements of OsGSTL1 existed in the 5′-upstream region between −2?155 and −1?224 bp.  相似文献   

6.
Phytochromes are red‐ and far red light photoreceptors in higher plants. Rice (Oryza sativa L.) has three phytochromes (phyA, phyB and phyC), which play distinct as well as cooperative roles in light perception. To gain a better understanding of individual phytochrome functions in rice, expression patterns of three phytochrome genes were characterized using promoter‐GUS fusion constructs. The phytochrome genes PHYA and PHYB showed distinct patterns of tissue‐ and developmental stage‐specific expression in rice. The PHYA promoter‐GUS was expressed in all leaf tissues in etiolated seedlings, while its expression was restricted to vascular bundles in expanded leaves of light‐grown seedlings. These observations suggest that light represses the expression of the PHYA gene in all cells except vascular bundle cells in rice seedlings. Red light was effective, but far red light was ineffective in gene repression, and red light‐induced repression was not observed in phyB mutants. These results indicate that phyB is involved in light‐dependent and tissue‐specific repression of the PHYA gene in rice.  相似文献   

7.
Leaves of three C4 plants, Setaria italica, Pennisetum typhoides,and Amaranthus paniculatus possessed five- to ten-fold higheractivities of a (Na+-K+)-dependent ATPase than those of twoC3 plants, Oryza sativa and Rumex vesicarius. Na+-K+ ATPasefrom leaves of Amarathus exhibited an optimal pH of 7?5 andan optimal temperature of 35 ?C. It required 40 mM K+ and 80mM Na+ for maximal activity. Ouabain partially inhibited (Na+-K+)-dependentATPase activity in leaves of C4 plants. Ouabain also blockedthe movement of label from initially formed C4 acids into endproducts in leaves of only C4 plants, Setaria and Amaranthusbut not in a C3 plant, Rumex. We propose that Na+-K+ ATPasemay mediate transfer of energy during active transport of C4acids from mesophyll into the bundle sheath.  相似文献   

8.
Wakayama M  Ohnishi J  Ueno O 《Planta》2006,223(6):1243-1255
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades—namely, the leaf sheath, stem, scale leaf, and constituents of the spike—also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.  相似文献   

9.
10.
We report new information on silica deposition in 15 plant species,including nine grasses, two sedges and four composites. Thesilica depositional patterns found in seven of the grass speciesindicate that they are C4 plants. However the festucoid grassCortaderia selloana is a C3 plant with long leaf trichomes andoval silica structures in the leaves. In contrast the panicoidC4 grasses Chasmathium latifolium, Chasmathium sessiflorum,Imperata cylindrica, Panicum repens, Panicum commutatum andSetaria magna, all produce dumb-bell-shaped silica structuresin the leaves. The chloridoid grasses Spartina patens and Spartinacynosuroides have saddle-shaped structures and no dumb-bellor oval shaped ones. The sedges Rhynchospora plumosa and Scirpuscyperinus were found to have oval phytoliths and may be C3 plants.Our examination of these and other grasses strongly suggeststhat C4 grasses tend to produce the same type of silica cells.Grasses and sedges with C3 type photosynthesis tend to produceoval silica structures. The composite Grindelia squarrosa andsunflowers Helianthus angustifolia, Helianthus atrorubens andHelianthus tuberosus absorb relatively small amounts of siliconand larger amounts of calcium, where both elements deposit inleaf trichomes. We found no clear indicator for the C3 sunflowersor C4 types in the Asteraceae. Helianthus tuberosus leaves havemany trichomes on the adaxial surface. These trichomes havea higher concentration of silica than the surrounding leaf surface.Helianthus tuberosus leaves had much higher ash and silica contentsthan those of Helianthus angustifolia and Helianthus atrorubens.The composite Grindelia squarrosa has a usual deposition ofsilica in the basal cells around the guard cells. Silica depositionoften reflects the surface features of a leaf. An exceptionis Scripus cyperinus where the silica structures are deep inthe tissue and do not reflect the surface configurations. Theinforescence of Setaria magna had a 14.64 silica content. Thetufts of white, silky hairs characteristic of Imperata cylindricainflorescence have no silica. C3 and C4 plants, silica and ash content, scanning electron microscopy, energy-dispersive X-ray analysis, silicon distribution, spectra of elements in plants, trichomes, silica fibres, phytoliths  相似文献   

11.
In situimmunolocalization and Western blot analysis of separatedcellular and subcellular fractions, were used to determine thelocalization of different isoforms of NADP-malic enzyme in bothwheat (C3) and maize (C4) plants. In both techniques, an affinitypurified anti-(maize 62 kDa NADP-ME) lgG from the maize greenleaf isoform also reacted with a 72 kDa protein in tissues ofC4 plants as well as C3 plants. The light- inducible 62 kDaisofomi is located in bundle sheath chioroplasts of maize leaves.In etiolated leaves and in roots of maize there is evidencefor the occurrence of a 72 kDa isoform which co-migrates on2-D (SDS and isoelectric focusing) PAGE. The 72 kDa isoformis also present in low levels in green leaves. This form mayoccur in multiple intracellular compartments; but in situ immunolocalizationexperiments and Western blot and activity assays on fractionatedprotoplasts indicate that a significant amount of this isoformoccurs in plastids. With regards to C3 plants such as wheat,a 72 kDa isoform in leaves is largely confined to the chloroplastsbased on in situ immunolocalization and Western blots and enzymeactivity assays with fractionated protoplasts. In maize, itappears that the constitutive expression pattern of a possibleC3 ancestral gene for NADP-malic enzyme has been maintained,and a high level expression of a light-inducible isoform locatedin bundle sheath chloroplasts (62 kDa) has been acquired duringits evolution. Key words: NADP-malic enzyme, Triticum aestivum, Zea mays  相似文献   

12.
We generated transgenic tobacco and rice plants harboring a chimeric gene consisting of the 5-upstream sequence of the rice metallothionein gene (ricMT) fused to the -glucuronidase (GUS) gene. The activity and tissue-specific expression of the ricMT promoter were demonstrated in these transgenic plants. In the transgenic rice plants, despite substantial levels of GUS activity in the shoot and root, almost no GUS signal was detected in the endosperm. Thus, the ricMT promoter could be useful in avoiding accumulation of undesired proteins in the seed endosperm.  相似文献   

13.
14.
Kidney bean plants (Phaseolus vulgaris) were found to have thecapability to produce C6-aldehydes (hexanal and hexenals) fromlinoleic and linolenic acids. The various organs tested hadlipoxygenase and hydroperoxide lyase activities responsiblefor the C6-aldehyde formation. Young leaves showed relativelyhigh activities for C6-aldehyde formation. However, the activitiesof the leaves decreased gradually with leaf expansion. Seedlingsand seeds containing cotyledons showed low activities for C6-aldehydeformation, because of the occurrence of an inhibitory factorin the cotyledons. The substrate specificity of the enzymeswas essentially the same among the various developmental stagesof leaves tested. (Received February 5, 1982; Accepted March 19, 1982)  相似文献   

15.
16.
17.
In transgenic plants, for many applications it is important that the inserted genes are expressed in a tissue-specific manner. This in turn could help better understanding their roles in plant development. Germin-like proteins (GLPs) play diverse roles in plant development and defense responses. In order to understand the functions and regulation of the GLP13 gene, its promoter (762 bp) was cloned and fused with a β-glucuronidase (GUS) reporter gene for transient expression in Arabidopsis thaliana and tobacco (Nicotiana tabacum cv. K326). Histochemical analysis of the transgenic plants showed that GUS was specifically expressed in vascular bundles predominantly in phloem tissue of all organs in Arabidopsis. Further analyses in transgenic tobacco also identified similar GUS expression in the vascular bundles.  相似文献   

18.
Pyruvate, orthophosphate dikinase (PPDK; EC 2.7.9.1 [EC] ) is a keyenzyme in photosynthesis in plants that exploit the C4 photosyntheticpathway for the fixation of CO2. This review focuses on thestructure, regulation and evolution of the C4-type ppdk genein the maize genome. The C4-ppdk gene in maize consists of 19exons spanning about 12 kbp. The gene is transcribed from twodifferent initiation sites under the control of two promotersto produce two mRNAs of different sizes. The larger one containsthe exon 1 sequence that encodes the chloroplast transit peptideand its product acts as C4-PPDK in chloroplasts, while the smallerone does not contain the sequence and its product may functionas a C3-enzyme in the cytosol. This unusual dual promoter systemis not unique to the maize C4-type ppdk gene since the sameorganization is also observed in the rice (C3 plant) ppdk geneand in Flaveria. Thus, the two-promoter system is common toplant ppdk genes from C3 and C4, monocot and dicot plants. Adiscussion is also presented of the generation of a system forregulation of the expression of the C4-type ppdk gene. A chimericgene consisting of a reporter gene under the control of thepromoter of maize CA-ppdk is exclusively expressed in photosynthetictissues and not in roots or stems of transgenic rice. The expressionof the introduced gene is also regulated by light: it is lowin etiolated leaves and is enhanced by illumination. These resultsindicate that the regulatory system that controls ppdk expressionin maize is not unique to C4 plants. 1Recipient of the JSPP Young Investigator Award, 1995.  相似文献   

19.
Light and electron microscopic observations of the leaf tissueof Panicum milioides showed that the bundle sheath cells containeda substantial number of chloroplasts and other organelles. Theradial arrangement of chlorenchymatous bundle sheath cells,designated as Kranz leaf anatomy, has been considered to bespecific to C4 plants. However, photosynthetic 14CO2 fixationand 14CO2 pulse-and-chase experiments revealed that the reductivepentosephosphate pathway was the main route operating in leavesof P. milioides. The interveinal distance of the leaves wasintermediate between C3and C4Gramineae species. These resultsindicate that P. milioides is a natural plant species havingchracteristics intermediate between C3 and C4 types. (Received March 6, 1975; )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号