首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从水稻基因组文库中筛选得到一个水稻GST基因,命名为OsGSTL1.半定量RT-PCR分析表明OsGSTL1基因的表达不受绿磺隆、乙烯利、脱落酸、水杨酸和茉莉酸甲酯的诱导,因此该基因可能与植物抗逆性无关.为了研究OsGSTL1启动子在植物体内的表达特性,将OsGSTL1起始位点5'端上游不同长度的调控序列与报告基因GUS融合,并在洋葱表皮瞬间表达和拟南芥中稳定表达.研究表明:在洋葱表皮细胞中,160bp及更长的上游调控序列均能启动GUS基因的表达;而在转基因拟南芥中,含有2155 bp的上游序列的PGZ2.1::GUS具有时空表达的特性,在转基因的早期幼苗中GUS基因在子叶中特异性表达,但在根中没有表达;而在幼苗生长的后期,根、茎、叶中都有少量的表达.但包含1 224 bp的上游序列的PGZ1.2::GUS却表现为组成型表达的特性.由此推测,OsGSTL1启动子启动的基因表达可能与幼苗的营养代谢相关;而OsGSTL1启动子的时空表达相关元件可能位于OsGSTL1翻译起始位点5'端上游-2155 bp至-1224 bp范围内.  相似文献   

2.
3.
PpMADS1, a member of the euAP1 clade of the class A genes, was previously cloned from peach. In this study, PpMADS1 was constitutively expressed in Arabidopsis thaliana to study its function in plant development. The transgenic A. thaliana plants containing 35S::PpMADS1 showed severe phenotype variation including early flowering, conversion of inflorescence branches to solitary flowers, formation of terminal flowers, production of higher number of carpels, petals, and stamens than non-transgenic plants, and prevention of pod shatter. Significantly, the transgenic plants produced more than one silique from a single flower. The results obtained by using cDNA microarray and real-time PCR analyses in the transgenic Arabidopsis indicated that PpMADS1 might play dual roles in regulating the floral meristem development by activating or repressing different sets of genes that would determine the different fate of a floral meristem. In addition, the PpMADS1 gene promoter was further cloned, and deletion analyses were conducted by using fused GUS as a reporter gene in transgenic A. thaliana. Histochemical staining of different organs from transgenic plants revealed the region between ?197 and ?454?bp was specific for GUS expression in flower primordium, and the region between ?454 and ?678?bp was specific for GUS expression in sepals and petals. In contrast, a negative regulatory element present between ?678 and ?978?bp could suppress GUS expression in filament.  相似文献   

4.
5.
6.
7.
S-adenosyl homocysteine hydrolase (SAHH) is a key enzyme in methylation metabolism of eukaryotes. A 1585 by fragment upstream to ATG of SAHH1 gene, was fused with a promoter-less β-Glucuronidase (GUS) gene and mobilized into Arabidopsis by Agrobacterium-mediated floral transformation to generate transgenic Arabidopsis. This fragment was found to drive constitutive expression of GUS in T2 progeny of transgenic Arabidopsis. In silico analysis of the promoter region of SAHH1 suggested the presence of several cis-regulatory motifs including seed-specific motifs as well as anther-specific motifs in the 376 by (upstream to TSS of SAHH1) promoter fragment. Based on the partial deletion analysis carried out in the promoter region of SAHH1 (At4gl3940) this 376 by promoter fragment was found to be capable of driving GUS expression in developing seeds and in some anthers/micros pores.  相似文献   

8.
Membrane-localized H+-symporting sucrose transporters (SUC or SUT proteins) are involved in sucrose loading into the phloem of source tissues and sucrose uptake into sink tissues, which are essential events in the growth and development of higher plants. While many of these sucrose transporters are localized in the phloem, others function in sink tissues. In an attempt to gain insight into which class the CsSUT1 gene from Citrus sinensis falls, we isolated a 1537-bp upstream region of this gene (CsSUT1p), inserted it upstream of the ??-glucuronidase (GUS) reporter gene and transformed the resulting vector into Arabidopsis thaliana. Histochemical and semi-quantitative RT-PCR analyses indicated that the CsSUT1p conferred GUS expression in floral tissues and the roots of young seedlings, but not above ground vegetative tissues. In flowers, GUS expression was noted in young floral buds, as well as immature stamens and carpels. Deletion analyses indicated that a ?1052 to ?1 fragment (relative to the translational start codon at +1) of the CsSUT1p, but not a ?496 to ?1 fragment, was able to drive the same pattern of expression of a downstream reporter gene in transgenic Arabidopsis. Taken together, these results suggest that the CsSUT1 gene, like numerous SUC/SUT genes from other plant species, may play a role in the uptake of sucrose into sink tissues.  相似文献   

9.
10.
Relationships between insertion/deletion (Ins/Del) polymorphisms of the bovine prion protein gene (PRNP) promoter and bovine spongiform encephalopathy (BSE) susceptibility have been reported. Our previous study has shown that polymorphisms of −6C → T included in the specific protein 1 (Sp1) site in the 5′-flanking region of bovine PRNP influence the promoter activity of bovine PRNP. The present study shows that 12 and 23 bp Ins/Del polymorphisms in the upstream region and an additional polymorphism (−47C → A) in the Sp1 binding site coordinately affect the promoter activity. Reporter gene assays demonstrated that the bovine PRNP promoter containing −47A and 23 bp Del/12 bp Ins or 23 bp Ins/12 bp Ins showed lower promoter activity compared with other haplotypes (23 bp Del/12 bp Ins or 23 bp Ins/12 bp Del with −47C) or the wild-type haplotype (23 bp Del/12 bp Del with −47C). Furthermore, gel shift assays showed that the binding activity of Sp1 to the PRNP promoter was influenced by both polymorphisms with corresponding effects on the promoter activity. The coordinate regulation of the bovine PRNP promoter suggests the two Sp1 binding site polymorphisms control Sp1 binding to the PRNP promoter and its activity.  相似文献   

11.
12.
A 1431-bp upstream fragment of Athsp70b was cloned via PCR amplification and expressed in onion epidermis by particle bombardment. Furthermore, the progressive deletions of the Athsp70b upstream fragment linked to the β-glucuronidase (GUS) coding region were performed. Then, a stable GUS expression was analyzed in tobacco BY2 cells and Arabidopsis. Our present results showed that about a 500-bp region upstream ATG of Athsp70b is suitable to confer heat inducibility to the GUS reporter gene in plants and around 116 bp contain nonperfect heat-sensitive element. This promoter responds to heat, salicylic acid, and benzyladenine. GUS staining was mainly observed in the vascular tissues and root tips, implying that Athsp70b is related to water transportation.  相似文献   

13.
14.
15.
16.
An Arabidopsis thaliana mutant, exhibiting anther specific GUS expression, identified from a mutant population of Arabidopsis tagged with a promoterless β-glucuronidase (GUS), carries the T-DNA insertions at two distinct loci. We have been able to segregate the two inserts from each other by backcrossing with wild type plants. The insertion responsible for anther specific GUS expression in segregating population has been identified and confirmed to be in the upstream region of a putative peroxidase gene, AT2G24800. Here we report detailed histochemical and molecular characterization of the mutant Anth85, carrying a single insertion of T-DNA in the peroxidase gene. In Anth85, the GUS expression was observed in the anthers and rosette of the young seedlings. The expression of GUS in the anthers was restricted to the tapetum and microspores. The mutant has no developmental defects and the gene appears to be redundant for normal plant growth. Cloning of upstream region and detailed deletion study of upstream region in transgenic plants is likely to lead to the identification of anther specific promoter elements.  相似文献   

17.
OSIPP3 gene (coding for pectin methylesterase inhibitor protein) was isolated from a pre-pollinated inflorescence-specific cDNA library by differential screening of stage-specific libraries from Oryza sativa. OSIPP3 is present in the genome of rice as a single copy gene. OSIPP3 gene was expressed exclusively in the pre-pollinated spikelets of rice. Upstream regulatory region (URR) of OSIPP3 was isolated and a series of 5′-deletions were cloned upstream of GUS reporter gene and were used to transform Arabidopsis. OSIPP3_del1 and del2 transgenic plants showed GUS expression in root, anther and silique, while OSIPP3_del3 showed GUS activity only in anthers and siliques. Pollen-specific expression was observed in case of plants harboring OSIPP3_del4 construct. It can, therefore, be concluded that the OSIPP3 URR between ?178 and +108 bp is necessary for conferring pollen-specific expression in Arabidopsis.  相似文献   

18.
Cryptic promoter elements play a significant role in evolution of plant gene expression patterns and are prospective tools for creating gene expression systems in plants. In a previous report, a 452 bp promoter fragment designated as cryptic root-specific promoter (AY601849) was identified immediately upstream to T-DNA insertion, in the intergenic region between divergent genes SAHH1 and SHMT4, in T-DNA tagged mutant M57 of Arabidopsis thaliana. In silico analysis of 452 bp promoter revealed typical eukaryotic promoter architecture, presence of root-specific motifs and other cis-regulatory motifs responsible for the spatial and temporal expression. GUS expression driven by 452 bp in M57 was developmentally as well as light-regulated. The AT-rich 452 bp promoter does not show homology to any known sequences. The 452 bp promoter was further proved cryptic and detailed molecular characterization of the promoter carried out through serial 5′ and 3′ deletion analysis, by cloning the promoter fragments upstream to promoter-less GUS vector. A 279 bp fragment obtained by deleting 173 bp from 5′ end of 452 bp was capable of driving root-specific expression, similar to that of full-length promoter. Further, root tip-specific, root-specific and core-regulatory motifs for root-specific expression were identified at positions 173–227, 251–323 and 408–452 bp, respectively, from the 5′ end of 452 bp. The 452 bp promoter was equally functional in inverse orientation, hence bidirectional and symmetric. In heterologous systems, such as Brassica juncea and Oryza sativa, the promoter activity was not significant since GUS was not visually detected in transient assays.  相似文献   

19.
A neutral trehalase (NTH1) of fungal entomopathogen Beauveria bassiana was characterized for the first time as a 743-aa enzyme (84.4 kDa). To identify crucial stress-responsive elements (STREs) to control the expression of the NTH-coding gene (BbNTH1) in response to different stresses, the full-length promoter (−2713 bp) upstream of its open reading frame and three upstream-truncated fragments (−1912, −1060 and −560 bp) were fused to the reporter gene eGFP and then transformed into B. bassiana, respectively. Consequently, eGFP was well expressed as intensive fluorescence in mycelia, conidiogenic cells and forming conidia controlled by the full-length promoter with five STREs. Surprisingly, transformants controlled by the shortest fragment with last two STREs at −315 and −274 bp exhibited consistently brightest fluorescence in mycelia under 3-h oxidative adaption of 0.3-1.2 mM menadione, and in colonies under 6-day osmotic stress of 0.5-1 M NaCl and thermal stress of 15-540 min at 40 °C after 3-day growth at 25 °C. Single or dual site-directed mutations of the two STREs from CCCCT to CATCT significantly altered the gene response to the multiple stresses. Thus, the two STREs in the downstream 560-bp region of the promoter are crucial to regulating not only constitutive but stress-inducible expression of the target gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号