首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
旨在为探究牦牛MC1R基因多态性与毛色形成的相关性,利用PCR-SSCP和DNA测序技术,对64头牦牛(33头黑色九龙牦牛,31头白色天祝白牦牛)的MC1R基因多态性进行检测。结果表明:天祝白牦牛和九龙牦牛均有3种基因型(AA、BB、AB),但天祝白牦牛的多态性较低,而九龙牦牛表现为中度多态。经χ2适合性检验,2个牦牛品种在该基因多态位点上均偏离Hardy-Weinberg平衡。测序结果表明BB型与AA型在该片段的第179位碱基处存在C→A单碱基突变;第214位碱基处发生T→C突变。  相似文献   

2.
为了研究牦牛α-酮戊二酸(盐)受体1(Oxoglutarate receptor1, OXGR1)基因多态性与其体尺性状的相关性,本文以4-8岁天祝雄性(阉)白牦牛的血液DNA(n=192)为实验材料并构建DNA混合池。通过DNA直接测序法检测OXGR1的核苷酸序列潜在的多态位点;利用高分辨率熔解曲线分析技术 (High Resolution Melting,HRM ) 进行分型。采用SHESIS软件对OXGR1基因多态位点进行连锁不平衡分析;运用 PIC-Calc 0.6软件分析多态信息含量;采用卡方检验检测 Hardy- Weinberg平衡;运用SPSS20.0软件对多态位点与体尺性状进行关联分析;运用RNAFOLD、ExPASy和Swiss-model软件对OXGR1基因突变前后的蛋白结构进行预测分析。结果表明:天祝白牦牛OXGR1基因发现有两个多态位点,分别为347(A/G)和678(G/A),每个位点均有3种基因型(AA、AG、和GG),其优势基因型分别为GG和AA。两个SNPs均达到Hardy-Weinberg 平衡(P>0.05),存在强连锁不平衡(D’>0.75, R2>0.33),且均表现为中度多态(0.25< PIC< 0.5)。上述位点不同基因型在体斜长、体高、胸围和管围存在显著差异(P<0.05)。分子结构预测显示:347 位点处突变为错义突变,其编码的氨基酸由天冬酰胺变为丝氨酸。突变后OXGR1 mRNA二级结构、蛋白质二级结构及三级结构均发生改变。上述结果表明: OXGR1基因可作为牦牛分子育种的候选分子标记,为今后牦牛遗传资源的保护、开发以及新品种的选育提供依据。  相似文献   

3.
牦牛生态类型的分类   总被引:4,自引:0,他引:4  
为进一步弄清中国牦牛的遗传资源及其类型划分,利用微卫星DNA、随机扩增多态性(RAPD)、扩增片断长度多态性(AFLP)等3种分子遗传标记技术研究了麦洼牦牛、九龙牦牛、大通牦牛和天祝白牦牛的分类;并结合作者对牦牛染色体和血液蛋白多态性的研究结果探讨了中国牦牛类群的分类.结果:①根据微卫星位点的等位基因频率进行聚类分析,表明麦洼牦牛和九龙牦牛的遗传距离最大(1.506),麦洼牦牛2个群体之间的遗传距离最小(1.062).5个牦牛群体被聚为两大类,四川九龙牦牛单独成一大类,其他牦牛群体聚为一类.②根据RAPD和AFLP两种分子遗传标记的分析,表明天祝牦牛和大通牦牛的遗传距离最小(0.0336),九龙牦牛和天祝牦牛的遗传距离最大(0.0414),4个牦牛品种被聚为两大类,九龙牦牛品种聚为一类,其它3个牦牛品种聚为一类.大通牦牛和天祝白牦牛在较近的水平上首先聚为一类,然后在较远处与麦洼牦牛聚为一大类.③根据染色体特征和血液蛋白位点的基因频率进行聚类的结果与微卫星DNA、RAPD、AFLP的聚类结果相似.中国牦牛可分为以九龙牦牛和麦洼牦牛为代表的两个类群(型).这与蔡立等将中国牦牛分为“青藏高原型”和“横断高山型”的结果是一致的.而与其他学者的分类结果有较大的差异.结合中国牦牛品种(群体)的地理分布、生态条件、育成史及其分化的实际情况,作者认为中国牦牛分为两个大的生态类型是合理的.  相似文献   

4.
血红素氧合酶HugZ是幽门螺旋杆菌(Helicobacter pylori)利用宿主血红素作为铁源的关键蛋白.HugZ的His245残基侧链咪唑基与血红素中心铁配位结合,是酶活中心的重要组成部分.用定点突变的方法构建HugZ突变体H245A、H249A和H245A/H249A基因,并将突变体蛋白表达纯化.通过X射线晶体学途径解析了突变体H245A与血红素复合物的2.55Å分辨率晶体结构.结构解析表明,HugZ的His249残基侧链咪唑基团与血红素的铁原子结合,从而补偿了His245侧链缺失.这种结构特征在已知血红素氧合酶中未曾发现.Val238 ψ平面的可翻转和Gly239的柔性是His249能与血红素配位结合的关键原因,二者的共同作用改变了C端肽链的走向,使Val238与His249之间的柔性回折与α1螺旋的相互作用发生解离,并向远离血红素的方向伸展.HugZ蛋白与血红素结合的光谱实验证明HugZ柔性C端上的组氨酸残基有利于HugZ与血红素的结合.研究结果表明,含多个组氨酸残基柔性C端的存在有利于血红素氧合酶HugZ结合和分解血红素.  相似文献   

5.
为探索4个牦牛品种MC1R基因多态性的相关信息,选取甘南牦牛、天祝白牦牛、青海高原牦牛、大通牦牛4个品种共408头个体为研究对象,采用PCR-SSCP方法分析牦牛MC1R基因部分序列的基因多态性。结果表明,与GenBank中牛MCIR基因序列(登录号:AF445641.1)比对发现,该扩增片段在3 891 bp处发生C→G的突变,在3 912 bp处发生T→C的突变,共发现CC、DD、EE、CD、CE和DE 6种基因型。4个牦牛品种中CD、CE和DE 3种基因型在青海高原牦牛和大通牦牛中占主要优势,这3种基因型频率总和在青海高原牦牛和大通牦牛群体中分别是0.778和0.781。DD和CD两基因型是甘南牦牛群里中的优势基因型,其基因型频率分别是0.351和0.328。天祝白牦牛中优势基因型是DD,其基因型频率是0.500。D等位基因是4个地方品种牦牛中的优势等位基因。4个地方品种在该基因座上都处于Hardy-Weinberg平衡状态(P>0.05)。青海高原牦牛和大通牦牛两个群体处于高度多态(PIC>0.5),甘南牦牛和天祝白牦牛处于中度多态(0.25相似文献   

6.
化学修饰--提高酶催化性能的重要工具   总被引:1,自引:0,他引:1  
讨论了化学修饰对酶的稳定性、有机溶剂溶解性、特殊条件下的活性和选择性的影响。对常见的和近期出现的酶修饰技术,包括交联酶晶体、酶蛋白侧链功能基共价修饰、酶蛋白表面修饰、结合定点突变的化学修饰、通过酶活性位点氨基酸原子置换进行化学突变等方法作了重点阐述。  相似文献   

7.
为从分子水平上探究西藏牦牛类群的遗传多样性、亲缘关系,本研究测定了日多牦牛、类乌齐牦牛、丁青牦牛、错那牦牛、隆子牦牛、仲巴牦牛、聂荣牦牛、申札牦牛等8 个西藏牦牛类群共328 头牦牛mtDNAD-loop区序列,分析其多态性,构建系统进化树。结果表明:本次测定的西藏牦牛mtDNA D-loop 区序列长度为 887 - 895 bp,共检测到135 个变异位点,其中单态突变位点52 个,简约信息位点83 个。在328 个个体中共检测出91 种单倍型,平均单倍型多样性(Hd)、平均核苷酸多样性(π)分别为0. 884、0.010 27,显示西藏牦牛具有丰富的遗传多样性。8 个类群间平均遗传距离为0.011;日多牦牛与错那牦牛间遗传距离最小(0. 006);类乌 齐牦牛与隆子牦牛间遗传距离最大(0.015)。系统进化分析显示西藏牦牛可分为两大类,错那牦牛是较纯的牦牛类群,其它牦牛类群在进化过程中出现相互交流的情况。  相似文献   

8.
以牦牛背最长肌为材料,采用RT-PCR法克隆了CAPN3基因的CDs区,并对其进行生物信息学分析。结果表明,牦牛CAPN3基因的CDs区长2 469 bp,编码822个氨基酸残基;生物信息学分析显示,其编码的蛋白属于非分泌表面蛋白,含有35个磷酸化位点,主要在细胞质和细胞核中发挥生物学作用。二级结构主要由α-螺旋、无规则卷曲、伸展链和β-转角组成,具有Cys Pc、calpain-Ⅲ和EFh家族蛋白结构域,无信号肽。牦牛CAPN3基因与黄牛、绵羊和猪在系统发育树上的距离最近。运用实时荧光定量分析CAPN3在不同组织中的表达量,CAPN3基因在牦牛的7种组织中均有表达,但在背最长肌、胰脏中的表达量较高。  相似文献   

9.
为研究hnRNP K基因的生物学功能及其在牦牛中的特异性,利用RT-PCR和粘性末端连接法,分两段克隆了牦牛hnRNP K基因cDNA序列。序列分析结果表明,牦牛hnRNP K基因cDNA序列长11706bp,开放阅读框(ORF)长1389bp,编码463个氨基酸。序列比对结果表明,牦牛与黄牛hnRNP K cDNA序列的同源性达99.1%,编码的氨基酸同源性达到97.0%;在牦牛氨基酸序列中有15个突变。通过同源建模的方法成功构建了牦牛hnRNP K蛋白质三级结构,结果表明牦牛hnRNP K属于A型结构,而黄牛hnRNP K蛋白属于B型结构,其差异是由第459-463位氨基酸序列由"ADVEG"突变为"SGKFF"所致。乙酰化分析结果显示,牦牛hnRNP K对基因转录的影响水平跟黄牛是一致,表明不同物种hnRNP K功能的差异可能跟其氨基酸序列的差异有关。成功克隆的牦牛hnRNP K基因的cDNA序列为进一步分析该基因的功能提供参考。  相似文献   

10.
以麦洼牦牛、斯布牦牛、天祝牦牛和九龙牦牛为研究对象,对黑色素皮质素受体1(Melanocortin receptor I,MCIR)基因编码区进行了克隆测序及分析.结果表明,牦牛的MC1R基因编码区全长954 bp,编码317个氨基酸:4个牦牛品种间及与普通牛间在MC1R基因的编码区内共有13个碱基差异,无碱基的插入和缺失现象,编码蛋白共有9个氨基酸差异.MC1R蛋白为亲水性蛋白,无信号肽,有糖基化位点和7个跨膜区.系统进化分析显示,麦洼牦牛与斯布牦牛的MC1R基因相似性最近.本研究结果时今后开展MC1R基因与牦牛毛色性状的相关性分析以及牦牛的毛色遗传机理、基因定位、基因表达调控等研究具有重要的意义.  相似文献   

11.
Comprehensive investigation of nucleotide diverdity in yaks   总被引:1,自引:0,他引:1       下载免费PDF全文
To understand the maternal genetic diversity of Tianzhu white yak better, we analyzed mtDNA D‐loop sequences of 209 Tianzhu white yaks, which are from the central region of Tianzhu white yak habitat. Accordingly, a total of 45 haplotypes were identified in Tianzhu white yaks in this study, and 18 of them were unique. The nucleotide diversity and haplotype diversity of population studied were 0.024 ± 0.003 and 0.946 ± 0.007 respectively, revealing that Tianzhu white yak possess a relatively high genetic diversity. The phylogenetic analysis, combining D‐loop sequences in this study with 533 previous published D‐loop sequences of 13 yak breeds, indicated that Tianzhu white yaks fell mainly into haplogroup A and that a small portion belonged to haplogroups B, C, D and E. Moreover, six haplotypes of 20 individuals identified in Tianzhu white yak were in the taurine haplogroup, indicating hybridization between Bos taurus and Tianzhu white yaks. In summary, this study supplies a comprehensive maternal genetic pattern for Tianzhu white yak and provides a basic reference for future breeding programs to conserve the purebred Tianzhu white yak.  相似文献   

12.
Chen CC  Herzberg O 《Biochemistry》2001,40(8):2351-2358
The serine-beta-lactamases hydrolyze beta-lactam antibiotics in a reaction that proceeds via an acyl-enzyme intermediate. The double mutation, E166D:N170Q, of the class A enzyme from Staphylococcus aureus results in a protein incapable of deacylation. The crystal structure of this beta-lactamase, determined at 2.3 A resolution, shows that except for the mutation sites, the structure is very similar to that of the native protein. The crystal structures of two acyl-enzyme adducts, one with benzylpenicillin and the other with cephaloridine, have been determined at 1.76 and 1.86 A resolution, respectively. Both acyl-enzymes show similar key features, with the carbonyl carbon atom of the cleaved beta-lactam bond covalently bound to the side chain of the active site Ser70, and the carbonyl oxygen atom in an oxyanion hole. The thiadolizine ring of the cleaved penicillin is located in a slightly different position than the dihydrothiazine ring of cephaloridine. Consequently, the carboxylate moieties attached to the rings form different sets of interactions. The carboxylate group of benzylpenicillin interacts with the side chain of Gln237. The carboxylate group of cephaloridine is located between Arg244 and Lys234 side chains and also interacts with Ser235 hydroxyl group. The interactions of the cephaloridine resemble those seen in the structure of the acyl-enzyme of beta-lactamase from Escherichia coli with benzylpenicillin. The side chains attached to the cleaved beta-lactam rings of benzylpenicillin and cephaloridine are located in a similar position, which is different than the position observed in the E. coli benzylpenicillin acyl-enzyme complex. The three modes of binding do not show a trend that explains the preference for benzylpenicillin over cephaloridine in the class A beta-lactamases. Rather, the conformational variation arises because cleavage of the beta-lactam bond provides additional flexibility not available when the fused rings are intact. The structural information suggests that specificity is determined prior to the cleavage of the beta-lactam ring, when the rigid fused rings of benzylpenicillin and cephaloridine each form different interactions with the active site.  相似文献   

13.
A bond between the N delta of the imidazole ring of His 392 and the C beta of the essential Tyr 415 has been found in the refined crystal structure at 1.9 A resolution of catalase HPII of Escherichia coli. This novel type of covalent linkage is clearly defined in the electron density map of HPII and is confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis of tryptic digest mixtures. The geometry of the bond is compatible with both the sp3 hybridization of the C beta atom and the planarity of the imidazole ring. Two mutated variants of HPII active site residues, H128N and N201H, do not contain the His 392-Tyr 415 bond, and their crystal structures show that the imidazole ring of His 392 was rotated, in both cases, by 80 degrees relative to its position in HPII. These mutant forms of HPII are catalytically inactive and do not convert heme b to heme d, suggesting a relationship between the self-catalyzed heme conversion reaction and the formation of the His-Tyr linkage. A model coupling the two processes and involving the reaction of one molecule of H2O2 on the proximal side of the heme with compound 1 is proposed.  相似文献   

14.
T G Spiro  G Smulevich  C Su 《Biochemistry》1990,29(19):4497-4508
Because vibrational frequencies are sensitive to structure, RR spectroscopy can provide structural information about kinetic steps in protein transformations when carried out in a time-resolved mode. UVRR spectroscopy has shown that the aromatic groups of the HbCO photoproduct respond with a delay of 20 microseconds and has provided direct structural evidence that the 20-microseconds kinetic step is the R-T quaternary re-arrangement of the subunits. RR bands of the porphyrin ring show that the core relaxes via a 0.1-microsecond protein motion, which probably allows the Fe atom to attain its full out-of plane displacement. The Fe-His stretching frequency has an elevated value immediately after CO photolysis, in part, perhaps, because of the protein constraint on the Fe displacement. It relaxes on both the 0.1- and 1-microsecond time scales to its value in R-state Hb and then decreases further to its T-state value. These changes may be connected with reorientation of the proximal His side chain. At very early times after a photolysis pulse, heating effects may be an important aspect of the protein dynamics, but further experiments are needed to understand the RR response.  相似文献   

15.
The Tianzhu white yak, a domestic yak indigenous to the Qilian Mountains, migrated inland from the Qinghai‐Tibet Plateau. Specific ecological and long‐term artificial selection influenced the evolution of its pure white coat and physiological characteristics. Therefore, it is not only a natural population that represents a genomic selective region of environmental adaptability but is also an animal model for studying the pigmentation of the yak coat. A total of 24 261 829 variants, including 22 445 252 SNPs, were obtained from 29 yaks by genome‐wide re‐sequencing. According to the results of a selective sweep analysis of Tianzhu white yak in comparison to Tibetan yaks, nine candidate genes under selection in Tianzhu white yak were identified by combining π, Tajima's D, πA/πB and FST statistics, with threshold standards of 5%. These genes include PDCD1, NUP210, ABCG8, NEU4, LOC102287650, D2HGDH, COL4A1, RTP5 and HDAC11. Five of the nine genes were classified into 12 molecular signaling pathways, and most of these signaling pathways are involved in environmental information processing, organismal systems and metabolism. A majority of these genes has not been implicated in previous studies of yak coat color and high‐altitude animals. Our findings are helpful not only for explaining the molecular mechanism of yak coat pigmentation but also for exploring the genetic changes in Tianzhu white yak due to environmental adaptation.  相似文献   

16.
Wu J  Gan JH  Xia ZX  Wang YH  Wang WH  Xue LL  Xie Y  Huang ZX 《Proteins》2000,40(2):249-257
The crystal structure of the recombinant trypsin-solubilized fragment of the microsomal cytochrome b(5) from bovine liver has been determined at 1.9 A resolution and compared with the reported crystal structure of the lipase-solubilized fragment of the membrane protein cytochrome b(5). The two structures are similar to each other. However, some detailed structural differences are observed: the conformation of the segment Asn16-Ser20 is quite different, some helices around the heme and some segments between the helices are shifted slightly, the heme is rotated about the normal of the mean plane of heme, one of the propionates of the heme exhibits a different conformation. The average coordination distances between the iron and the two nitrogen atoms of the imidazole ligands are the same in the two structures. Most of the structural differences can be attributed to the different intermolecular interactions which result from the crystal packing. The wild-type protein structure is also compared with its Val61His mutant, showing that the heme binding and the main chain conformations are basically identical with each other except for the local area of the mutation site. However, when Val61 is mutated to histidine, the large side chain of His61 is forced to point away from the heme pocket toward the solvent region, disturbing the micro-environment of the heme pocket and influencing the stability and the redox potential of the protein.  相似文献   

17.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

18.
The X-ray structures of the chloroperoxidase from Curvularia inaequalis, heterologously expressed in Saccharomyces cerevisiae, have been determined both in its apo and in its holo forms at 1.66 and 2.11?Å resolution, respectively. The crystal structures reveal that the overall structure of this enzyme remains nearly unaltered, particularly at the metal binding site. At the active site of the apo-chloroperoxidase structure a clearly defined sulfate ion was found, partially stabilised through electrostatic interactions and hydrogen bonds with positively charged residues involved in the interactions with the vanadate in the native protein. The vanadate binding pocket seems to form a very rigid frame stabilising oxyanion binding. The rigidity of this active site matrix is the result of a large number of hydrogen bonding interactions involving side chains and the main chain of residues lining the active site. The structures of single site mutants to alanine of the catalytic residue His404 and the vanadium protein ligand His496 have also been analysed. Additionally we determined the structural effects of mutations to alanine of residue Arg360, directly involved in the compensation of the negative charge of the vanadate group, and of residue Asp292 involved in forming a salt bridge with Arg490 which also interacts with the vanadate. The enzymatic chlorinating activity is drastically reduced to approximately 1% in mutants D292A, H404A and H496A. The structures of the mutants confirm the view of the active site of this chloroperoxidase as a rigid matrix providing an oxyanion binding site. No large changes are observed at the active site for any of the analysed mutants. The empty space left by replacement of large side chains by alanines is usually occupied by a new solvent molecule which partially replaces the hydrogen bonding interactions to the vanadate. The new solvent molecules additionally replace part of the interactions the mutated side chains were making to other residues lining the active site frame. When this is not possible, another side chain in the proximity of the mutated residue moves in order to satisfy the hydrogen bonding potential of the residues located at the active site frame.  相似文献   

19.
We have determined by X-ray crystallography the structures of several variants of staphylococcal nuclease with long flexible straight chain and equivalent length cyclic unnatural amino acid side chains embedded in the protein core. The terminal atoms in the straight side chains are not well defined by the observed electron density even though they remain buried within the protein interior. We have previously observed this behavior and have suggested that it may arise from the addition of side-chain vibrational and oscillational motions with each bond as a side chain grows away from the relatively rigid protein main chain and/or the population of multiple rotamers (Wynn R, Harkins P, Richards FM. Fox RO. 1996. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease. Protein Sci 5:1026-1031). Reduction of the number of degrees of freedom by cyclization of a side chain would be expected to constrain these motions. These side chains are in fact well defined in the structures described here. Over-packing of the protein core results in a 1.0 A shift of helix 1 away from the site of mutation. Additionally, we have determined the structure of a side chain containing a single hydrogen to fluorine atom replacement on a methyl group. A fluorine atom is intermediate in size between methyl group and a hydrogen atom. The fluorine atom is observed in a single position indicating it does not rotate like methyl hydrogen atoms. This change also causes subtle differences in the packing interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号