首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
布鲁氏菌逃逸宿主的抗感染免疫机制   总被引:1,自引:0,他引:1  
布鲁氏菌病是由布鲁氏菌引发的世界范围的人兽共患传染病。布鲁氏菌为兼性胞内寄生菌,无典型的毒力因子,但却有很强的致病性,常引发人和动物的慢性感染。逃逸宿主的抗感染免疫反应是慢性感染的先决条件,这种能力对于布鲁氏菌的毒力来说似乎也越来越关键。作为成功的致病性病原菌,布鲁氏菌采用"隐秘的"策略以逃避或抑制固有免疫、调节适应性免疫,从而在宿主细胞内建立长期的持续性感染。本文将围绕布鲁氏菌逃逸宿主的抗感染免疫的分子机制进行阐述,旨为阐明布鲁氏菌毒力的新见解,这很可能为布病的预防开辟新的途径。  相似文献   

2.
新型药物靶点agr群体感应系统的研究进展及其应用   总被引:1,自引:0,他引:1  
病原菌能够引起人类痰病,引起疾病的原因是因为其具有毒力因子和致病力.为了感染宿主引起痰病,致病菌要针对宿主信号,准确调控毒力基因的表达.在病原菌中存在复杂的调节致病因子分泌的机制,附属基因agr系统是金黄色葡萄球菌中研究最多的毒力响应调节因子.综述了金黄色葡萄球菌agr系统的最新研究进展,并阐述了其在新型抗菌药物开发中的应用前景.  相似文献   

3.
布鲁氏菌病是由布鲁氏菌引起的重大人畜共患病之一,给我国养殖业发展和公共安全带来严重危害。有效控制和逐步消灭布鲁氏菌病对于公共卫生安全和养殖业的发展具有重要意义。然而,由于布鲁氏菌为胞内寄生菌且结构复杂,其致病机制和相关毒力因子仍不十分清楚;加之我国现有的布鲁氏菌疫苗均为光滑型疫苗,其诱导产生的抗体与自然感染在临床诊断上存在着干扰,给种群净化带来严重困难。虽然已有许多研究通过多种技术尝试解决上述问题,但进展多较为缓慢。蛋白质组学作为研究蛋白质组成和变化规律的新兴学科,随着其研究手段的逐步发展和完善,通过蛋白质组学的手段揭示布鲁氏菌的致病机理、免疫机制等的研究逐渐增多,对于解决布鲁氏菌带来的上述问题提供了崭新的思路。本文结合实验室自身研究,主要从蛋白质组学对布鲁氏菌特异性蛋白的挖掘和对鉴别诊断的意义等方面做一简要阐述。  相似文献   

4.
白念珠菌作为条件致病真菌,其感染力受各种毒力因子及不同宿主的影响。该文将白念珠菌的毒力因子和宿主细胞作为论述对象,探究其对白念珠菌致病性的影响,并对其致病机制进行综述,为进一步开发、利用治疗白念珠菌的药物奠定理论依据。  相似文献   

5.
猪链球菌是一种传染性革兰氏阳性菌,是严重影响养猪业发展的重要人畜共患病原体,造成人类死亡率在5%~20%。其毒力因子在致病过程中发挥着重要作用。近年来对猪链球菌2型的毒力因子研究有诸多新的进展,对其致病机制的了解和对该病有效防控都有新的认识。对近些年研究2型猪链球菌毒力相关因子,对蛋白质类、酶类研究的新进展,同时对毒力因子基因表达双组分系统、与宿主免疫系统相互作用的Ⅳ型分泌系统的进展进行总结和分析,以期为猪链球菌病的治疗和疫苗的研制提供新参考。  相似文献   

6.
白念珠菌是一种重要的人类致病性真菌,其致病机制与多种因素有关.水解酶是白念珠菌最重要的毒力因子之一,在其入侵宿主过程中起关键作用.白念珠菌水解酶包括分泌型天冬氨酸蛋白酶、磷脂酶和脂肪酶,介导白念珠菌的表型转换、对宿主组织的黏附及对宿主免疫系统的干预,使其能够入侵宿主组织和逃避宿主的免疫防御机制.该文我们综述了白念珠菌水解酶的生物学属性和致病机制的研究进展.  相似文献   

7.
张婷  杨梦华 《微生物学报》2020,60(7):1345-1357
副溶血弧菌是革兰氏阴性嗜盐细菌,是海洋脊椎动物和无脊椎动物中主要致病菌,也是引起人类急性肠胃炎、败血症和坏死性筋膜炎等疾病的主要病原体。在过去,由副溶血弧菌引起的致病感染在世界范围内有不断增加的趋势。副溶血弧菌的致病性与其自身产生的多种毒力因子有关,这些毒力因子包括粘附因子、脂多糖、溶血素、III型分泌系统、VI型分泌系统、铁摄取系统、蛋白酶、外膜蛋白等。然而,这些毒力因子的表达都受到环境因子以及宿主体内信号因子的调控。副溶血弧菌通过感知外界生存环境的各种信号因子,从而激活体内不同的信号通路,进而诱导不同的毒力因子的表达。本文主要对副溶血弧菌毒力因子表达调控的分子机制进行综述,为更好地理解宿主与病原体的相互作用对副溶血弧菌的致病机制的影响,以及为今后预防和治疗由副溶血弧菌所引起的疾病提供理论参考。  相似文献   

8.
致病岛是指细菌染色体上一段具有典型结构特征的基因簇,主要编码与细菌毒力及代谢等功能相关的产物。Ⅳ型分泌系统指革兰阴性菌中由多种蛋白分子构成的、通过菌毛样结构向宿主细胞注入毒力因子的分泌系统。幽门螺杆菌细胞毒素相关基因致病岛及其编码的Ⅳ型分泌系统是幽门螺杆菌关键性致病因子,有可能成为药物作用的新靶标,是近年相关研究的热点。  相似文献   

9.
铜绿假单胞菌是临床上重要的条件致病菌,具有多种毒力因子且极易产生耐药性。Ⅲ型分泌系统(Type Ⅲ secretion system,T3SS)是铜绿假单胞菌中重要的毒性因子分泌系统,该菌通过Ⅲ型分泌系统将多种毒力因子注入到真核宿主细胞内并逃逸宿主细胞免疫系统的清除,引起宿主细胞相应的病理变化。对Ⅲ型分泌系统的研究,不仅有助于明确铜绿假单胞菌的致病机理,更可为临床治疗和药物研发提供理论基础。本文主要对铜绿假单胞菌中Ⅲ型分泌系统的结构、功能、调控机制以及针对性治疗策略等方面的研究进行了综述。  相似文献   

10.
赵亚婧  张宏 《菌物学报》2020,39(11):2076-2087
白念珠菌是人类正常菌群,也是致死性真菌感染最重要的病原体之一。目前,白念珠菌致病的决定性机制仍未明确,其对宿主的致病性主要取决于菌体的毒力因子、菌体与宿主相互作用两方面。能量代谢是白念珠菌生长繁殖的基础,也是影响其致病性的重要因素。深入研究白念珠菌能量代谢特征,探索其在致病过程中的作用,或可为发现新的药物靶点奠定基础。白念珠菌是人类正常菌群,也是致死性真菌感染最重要的病原体之一。目前,白念珠菌致病的决定性机制仍未明确,其对宿主的致病性主要取决于菌体的毒力因子、菌体与宿主相互作用两方面。能量代谢是白念珠菌生长繁殖的基础,也是影响其致病性的重要因素。深入研究白念珠菌能量代谢特征,探索其在致病过程中的作用,或可为发现新的药物靶点奠定基础。  相似文献   

11.
Brucella species are responsible for the global zoonotic disease brucellosis. These intracellular pathogens express a set of factors - including lipopolysaccharides, virulence regulator proteins and phosphatidylcholine - to ensure their full virulence. Some virulence factors are essential for invasion of the host cell, whereas others are crucial to avoid elimination by the host. They allow Brucella spp. to survive and proliferate within its replicative vacuole and enable the bacteria to escape detection by the host immune system. Several strategies have been used to develop animal vaccines against brucellosis, but no adequate vaccine yet exists to cure the disease in humans. This is probably due to the complicated pathophysiology of human Brucella spp. infection, which is different than in animal models. Here we review Brucella spp. virulence factors and how they control bacterial trafficking within the host cell.  相似文献   

12.
Brucella lipopolysaccharide acts as a virulence factor   总被引:1,自引:0,他引:1  
Brucella is a facultative intracellular bacterium responsible for brucellosis. Virulence factors involved in Brucella replication and Brucella's strategies to circumvent the immune response are under investigation. VirB proteins that form the type IV secretion system and that are involved in intracellular replication are considered as one of Brucella's virulence factors. In addition to this secretion system, bacterial outer membrane components have also been described as being implicated in Brucella survival in the host. For example, this bacterium possesses an unconventional non-endotoxic lipopolysaccharide that confers resistance to anti-microbial attacks and modulates the host immune response. These properties make lipopolysaccharide an important virulence factor for Brucella survival and replication in the host.  相似文献   

13.
Brucella species are responsible for brucellosis, a worldwide zoonotic disease causing abortion in domestic animals and Malta fever in humans. Based on host preference, the genus is divided into six species. Brucella abortus, B. melitensis, and B. suis are pathogenic to humans, whereas B. ovis and B. neotomae are nonpathogenic to humans and B. canis human infections are rare. Limited genome diversity exists among Brucella species. Comparison of Brucella species whole genomes is, therefore, likely to identify factors responsible for differences in host preference and virulence restriction. To facilitate such studies, we used the complete genome sequence of B. melitensis 16M, the species highly pathogenic to humans, to construct a genomic microarray. Hybridization of labeled genomic DNA from Brucella species to this microarray revealed a total of 217 open reading frames (ORFs) altered in five Brucella species analyzed. These ORFs are often found in clusters (islands) in the 16M genome. Examination of the genomic context of these islands suggests that many are horizontally acquired. Deletions of genetic content identified in Brucella species are conserved in multiple strains of the same species, and genomic islands missing in a given species are often restricted to that particular species. These findings suggest that, whereas the loss or gain of genetic material may be related to the host range and virulence restriction of certain Brucella species for humans, independent mechanisms involving gene inactivation or altered expression of virulence determinants may also contribute to these differences.  相似文献   

14.
Brucella spp. are facultative intracellular bacteria pathogenic for many mammalian species including humans, causing a disease called brucellosis. Learning how Brucella adapts to its intracellular niche is crucial for understanding its pathogenesis mechanism, allowing for the development of new and more effective vaccines and treatments against brucellosis. Brucella pathogenesis resides mostly in its ability to adapt to the harsh environmental conditions encountered during host infection such as the oxygen depletion. The mechanism by which Brucella senses the oxygen tension and triggers its environmental adaptation is unknown. In this work we show that the Brucella abortus NtrY/NtrX two-component system is involved in oxygen sensing through a haem group contained in a Per-ARNT-SIM (PAS) domain of the NtrY histidine kinase. The NtrY haem iron can be reduced to the ferrous form and is rapidly oxidized to the ferric form in presence of oxygen. Importantly, we show that the oxidation state of the haem iron modulates the autokinase activity, being the anoxygenic reduced ferrous form the signalling state of NtrY. Also, we show that ntrY gene expression increases under low oxygen tension and that NtrY transfers its signal to its cognate response regulator NtrX, regulating in this way the expression of nitrogen respiration enzymes. Based on these findings, we postulate that NtrY acts as a redox sensor in Brucella spp.  相似文献   

15.
Organelle robbery: Brucella interactions with the endoplasmic reticulum   总被引:1,自引:0,他引:1  
Brucella is an intracellular pathogen that survives and multiplies inside host macrophages to cause brucellosis. The underlying mechanisms of intracellular survival, including the bacterial and the host determinants remain relatively unknown. Recent advances have helped to decipher how Brucella controls the biogenesis of its intramacrophagic replicative organelle. Brucella initially avoids or escapes the endocytic pathway to ensure its intracellular survival, which is then further secured via the biogenesis of an endoplasmic reticulum-derived replicative organelle. A major virulence factor, the VirB type IV secretion system, is required for sustained interactions and fusion with the host endoplasmic reticulum.  相似文献   

16.
Physiological adaptation of intracellular bacteria is critical for timely interaction with eukaryotic host cells. One mechanism of adaptation, the stringent response, is induced by nutrient stress via its effector molecule (p)ppGpp, synthesized by the action of RelA/SpoT homologues. The intracellular pathogen Brucella spp., causative agent of brucellosis, possesses a gene homologous to relA/spoT, named rsh, encoding a (p)ppGpp synthetase as confirmed by heterologous complementation of a relA mutant of Sinorhizobium meliloti. The Rsh deletion mutants in Brucella suis and Brucella melitensis were characterized by altered morphology, and by reduced survival under starvation conditions and in cellular and murine models of infection. Most interestingly, we evidenced that expression of virB, encoding the type IV secretion system, a major virulence factor of Brucella, was Rsh-dependent. All mutant phenotypes, including lack of VirB proteins, were complemented with the rsh gene of Brucella. In addition, RelA of S. meliloti functionally replaced Brucella Rsh, describing the capacity of a gene from a plant symbiont to restore virulence in a mammalian pathogen. We therefore concluded that in the intramacrophagic environment encountered by Brucella, Rsh might participate in the adaptation of the pathogen to low-nutrient environments, and indirectly in the VirB-mediated formation of the final replicative niche.  相似文献   

17.
感染布氏杆菌后的THP-1细胞的蛋白质组学研究   总被引:1,自引:0,他引:1  
在布氏杆菌(Brucella)的感染免疫过程中,单核巨噬细胞的应答起着非常关键的作用,而毒力不同的布氏杆菌引起的宿主反应截然不同。用双向电泳技术对THP-1单核细胞受毒力不同的布氏杆菌株侵袭后的全细胞蛋白谱进行差异比较和分析,共发现了38个差异表达的蛋白质点。这些点经过胶内酶切后进行MALDI-TOF质谱鉴定,每个蛋白质点的肽质量指纹图谱都在人类的蛋白质组数据库中用Mascot进行检索后,发现这些差异表达的蛋白主要集中在结构蛋白,信号传导途径和物质代谢等领域,还有一些功能未知的蛋白。这一结果为研究布氏杆菌的感染与致病机制提供了方向,对深入探讨病原菌-宿主的相互作用模式具有参考价值。  相似文献   

18.
Dr David Bruce (1855-1931) first identified the causative agent of brucellosis as a small Gram-negative alpha-Proteobacterium, which was later on called Brucella melitensis in his honor by Meyer and Shaw. Nowadays, four strains exhibit pathogenicity in humans with B. melitensis being the least host specific and also the most infectious for humans. The other strains are Brucella suis and Brucella abortus and more recently human cases being infected with Brucella cetaceae have been reported. Why such a reemerging disease is so difficult to fight, evidence shows that the pathogenic bacterium has developed strategies to hide from immune recognition.  相似文献   

19.
Barbier T  Nicolas C  Letesson JJ 《FEBS letters》2011,585(19):2929-2934
"In vivo" bacterial nutrition, i.e. the nature of the metabolic network and substrate(s) used by bacteria within their host, is a fundamental aspect of pathogenic or symbiotic lifestyles. A typical example are the Brucella spp., facultative intracellular pathogens responsible for chronic infections of animals and humans. Their virulence relies on their ability to modulate immune response and the physiology of host cells, but the fine-tuning of their metabolism in the host during infection appears increasingly crucial. Here we review new insights on the links between Brucella virulence and metabolism, pointing out the need to investigate both aspects to decipher Brucella infectious strategies.  相似文献   

20.
Brucella pathogenesis, genes identified from random large-scale screens   总被引:1,自引:0,他引:1  
Pathogenicity islands, specialized secretion systems, virulence plasmids, fimbriae, pili, adhesins, and toxins are all classical bacterial virulence factors. However, many of these factors, though widespread among bacterial pathogens, are not necessarily found among bacteria that colonize eukaryotic cells in a pathogenic/symbiotic relationship. Bacteria that form these relationships have developed other strategies to infect and grow in their hosts. This is particularly true for Brucella and other members of the class Proteobacteria. Thus far the identification of virulence factors for Brucella has been largely dependent on large-scale screens and testing in model systems. The genomes of the facultative intracellular pathogens Brucella melitensis and Brucella suis were sequenced recently. This has identified several more potential virulence factors for Brucella that were not found in large screens. Here, we present an overall view of Brucella virulence by compiling virulence data from the study of 184 attenuated mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号