首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物根系是全球陆地生态系统碳储量的重要组成部分,在全球生态系统碳循环中起着重要作用,日益加剧的氮沉降会影响根系生物量在空间和不同径级的分配,进而影响森林生态系统的生产力和土壤养分循环。以杉木幼树为研究对象,通过野外氮沉降模拟实验,研究氮沉降四年后对不同土层、不同径级根系生物量的影响。结果发现:(1)低氮和高氮处理总细根生物量较对照均无显著差异(P > 0.05),高氮处理粗根生物量及总根系生物量较对照分别增加45%和40%(P < 0.05);(2)与对照相比,施氮处理显著增加20-40 cm与40-60 cm土层细根和粗根生物量,且在低氮处理下,20-40 cm土层细根、粗根在总土层细根与粗根生物量的占比显著提高。(3)与对照相比,高氮处理显著增加了2-5 mm、5-10 mm及10-20 mm径级的根系生物量,低氮处理显著增加2-5 mm、5-10 mm径级根系生物量,且显著降低20-50 mm径级根系生物量。综上所述表明:氮沉降后杉木幼树通过增加较粗径级根系来增加对养分及水分的输送,同时通过增加深层根系生物量及其比例的策略来维持杉木幼树的快速生长;而根系生物量的增加,在一定程度上会增加根系碳源的输入,影响土壤碳循环过程。  相似文献   

2.
为揭示全球变暖和降水格局改变对我国中亚热带地区森林生态系统地下生态过程的影响,在福建三明森林生态系统国家野外科学观测研究站内开展杉木(Cunninghamia lanceolata)幼树土壤增温和隔离降水双因子试验,研究增温和隔离降水在夏季对杉木幼树细根生物量、形态及养分特征的影响。结果表明,增温(+5℃,W)、隔离降水(–50%,P)和增温+隔离降水(WP)处理的细根总生物量分别比对照(CT)显著降低35.7%、51.7%和59.1%,P和WP处理的细根总生物量分别比W处理显著降低24.9%和36.4%;W、P和WP处理的0~1 mm细根比根长(specific root length,SRL)比对照均显著增加,而0~1和1~2 mm细根比表面积(specific root area,SRA)均无显著变化;与对照相比,W处理的细根N含量、C/N和δ15N均无显著变化,P处理的细根N含量和C/N分别显著增加和下降,WP处理的细根N含量和δ15N显著增加,而C/N显著降低。因此,未来在全球变暖和降水减少的双重环境胁迫下,调整表层细根形态特征可能不是杉木幼树的主要应对策略;而相较于温度升高,降水减少可能是影响杉木幼树细根生物量及表层化学元素分配的主要环境因子。  相似文献   

3.
在福建三明森林生态系统与全球变化研究站陈大观测点开展大气温度控制、土壤温度控制和土壤资源分布3因子试验,探讨土壤资源异质分布和增温对杉木幼苗地下和地上生长的影响,以及增温是否能改变杉木幼苗细根对土壤资源异质分布的识别度,以明确杉木人工林在全球变暖背景下对土壤资源异质分布的响应.结果表明:杉木对土壤资源异质分布的识别度主要体现在吸收根(0~1 mm径级)上,而1~2 mm径级细根则不具有识别度.除了单独大气增温处理对杉木1~2 mm径级细根的避贫系数具有显著影响外,不同增温处理均未对杉木幼树细根的贫富比、趋富系数和避贫系数产生显著影响.与土壤资源均质分布相比,土壤资源异质分布增加了0~1 mm径级细根生物量,降低了树高.与无大气增温相比,大气增温降低了0~1和0~2 mm径级细根生物量,增加了树高.与无土壤增温相比,土壤增温降低了1~2 mm径级细根生物量,但增加了树高和侧枝长度.大气增温控制、土壤增温控制和土壤资源异质分布对杉木地下、地上生长都无显著交互作用.杉木幼苗吸收根本身对土壤资源异质分布具有识别度,但增温并不会改变杉木幼苗细根对土壤资源异质分布的识别度.  相似文献   

4.
科尔沁沙地赤松和樟子松根系生物量分配与构型特征   总被引:1,自引:0,他引:1  
沙地赤松(Pinus densiflora)在科尔沁沙地南缘区已有50年的引种历史,但其生长表现和根系生物量分配与构型特征还很少被报道。本研究以同龄(40 a)樟子松为对照,在生长指标测定基础上,采用分层分段全挖法采集根系,对沙地赤松不同径级根生物量分配规律进行研究,测定根长、连接数量、平均连接长度等指标,同时计算分形维数和分形丰度。结果表明:与樟子松相比,沙地赤松具有较大生长量和生物量,其根生物量显著高于樟子松,是其1.96倍,细根(直径≤0.2 cm)生物量更显著高于樟子松,是其4.76倍;沙地赤松根系生物量占总生物量的29.0%,细根生物量占总根系生物量的1.1%,细根长度占根总长度的44.3%;樟子松根系生物量占总生物量的25.6%,细根生物量占总根系生物量的0.4%,细根长度占根总长度的28.8%;从根系垂直分布看,沙地赤松地下0~180 cm均有细根分布,且40~180 cm范围内细根生物量占总细根生物量的65.2%;樟子松几乎全部细根分布于0~100 cm范围内,此范围细根生物量占总细根生物量的99.2%,且0~40 cm土层细根生物量占63.4%;虽然两树种根系平均连接长度没有显著差异,但沙地赤松细根及部分中根(0.2~2.0 cm)连接数量显著高于樟子松;沙地赤松根系分形维数为1.548±0.251,是樟子松(1.293±0.190)的1.2倍,并且分形丰度是樟子松的1.3倍;与樟子松相比,沙地赤松根系具有较强的吸收能力,能够利用较大范围的深层水分和养分,根系分支多,拓扑结构更加复杂。  相似文献   

5.
为了揭示杉木(Cunninghamia lanceolata)人工林地下部分对全球变暖和氮沉降的响应,在福建省三明市开展了杉木幼苗土壤增温和氮添加双因子试验,包括对照、增温、低氮、高氮、增温低氮、增温高氮6个处理,用微根管法探讨试验第1年土壤增温、氮添加及其交互作用对杉木幼苗细根生产量(以每根管细根一年总出生数量作为表征)的影响。结果表明:(1)土壤增温对细根生产量有显著影响;氮添加、土壤增温与氮添加交互作用对细根生产量并没有显著影响。(2)土壤增温、径级、土壤增温和径级的交互作用对细根生产量有显著影响;土壤增温显著增加了0–1 mm径级细根的生产量,表明小径级的吸收根对于增温的响应更具有可塑性。(3)土壤增温、季节、土壤增温和季节的交互作用,以及土壤增温、氮添加和季节三者的交互作用对细根生产量的影响均达到显著水平。春季,土壤增温、土壤增温和氮添加的交互作用对细根生产量有显著的促进作用;而在夏季,土壤增温、氮添加以及两者的交互作用对细根生产量有显著的抑制作用。(4)土壤增温、土层,以及土壤增温和土层的交互作用对细根生产量有显著影响,土壤增温仅对20–30 cm土层的细根生产有显著的促进作用,表明土壤增温促使细根向更深层土壤分布。由此可见:土壤增温促进了杉木幼苗细根生产,但其影响因径级、季节和土层而异;氮添加则对细根生产没有影响;土壤增温和氮添加仅在春季和夏季才存在显著的交互作用。  相似文献   

6.
为了揭示我国最重要的人工林树种杉木对全球变暖和降水格局改变的地下响应及其适应性,在福建省三明市陈大国有林场开展杉木(Cunninghamia lanceolata)幼苗土壤增温和隔离降水双因子试验,包括对照(CK)、土壤增温5℃(W)、隔离降水50%(P)和土壤增温+隔离降水(WP)4个处理,用微根管法探讨试验1a期间土壤增温、隔离降水及其交互作用对杉木幼苗细根生产量(以细根出生数量表征)的影响。双因素方差分析发现,土壤增温和隔离降水对细根总出生数量没有影响,但两者的交互作用则极显著。与CK相比,W细根总出生数量显著增加,而WP处理细根总出生数量则显著低于W处理和P处理。土壤增温、隔离降水与季节的重复测量方差分析发现,土壤增温×季节、隔离降水×季节对细根出生数量均有显著影响;与CK相比,W处理春季细根出生数量显著增加,P处理秋季细根出生数量显著增加,而WP处理夏季和冬季细根出生数量显著下降。土壤增温、隔离降水与径级的三因素方差分析表明,土壤增温×隔离降水×径级存在显著影响;0—1 mm径级细根出生数量W处理显著高于CK,但WP处理则显著低于W处理和P处理。土壤增温、隔离降水与土层的3因素方差分析表明,土壤增温、隔离降水与土层之间不存在显著的交互作用;仅在20—40 cm土层发现P处理细根出生数量显著高于CK。研究结果表明,土壤增温和隔离降水对杉木幼苗细根生产的影响存在显著的交互作用,这种交互作用还因不同的季节和径级而异。  相似文献   

7.
关帝山华北落叶松人工林细根生物量空间分布及季节变化   总被引:2,自引:0,他引:2  
利用根钻法研究了山西关帝山华北落叶松(Larix principis—rupprechtii Mayr)人工林细根生物量的空间分布和季节变化特征。结果表明,华北落叶松不同径级细根生物量随土层深度的增加而逐渐减少,土壤表层(0—10cm)中各径级细根的生物量最高,Ⅰ级细根(根直径0~1mm)的生物量在不同土层深度间差异显著(P〈0.05);距树干不同水平距离处各径级的细根生物量差异均未达到显著水平(P〉0.05)。在0~10cm土层中,各径级细根生物量的季节变化差异显著(P〈0.05),均表现为单峰型,峰值出现在9月份;在10~20cm和20-30cm土层中,Ⅰ级和Ⅱ级(根直径1~2mm)细根生物量季节变化差异显著,Ⅲ级细根(根直径2~5mm)和Ⅰ级死根(根直径0~2mm)生物量季节变化差异不显著。  相似文献   

8.
通过研究不同径级思茅松人工林根系特征、地上部分各器官以及根系生物量分配特征,构建以胸径和树高为变量的思茅松人工林各器官生物量的异速生长方程,为思茅松人工林乔木层碳储量的准确测算提供科学依据。结果表明:思茅松的粗根(根径2.0 cm)、大根(1.0~2.0 cm)、中根(0.5~1.0 cm)和小根(0.2~0.5 cm)的根长和比根长随径级增加而增大,细根(0.2 cm)的比根长降低;中根、小根和细根在根生物量中所占的比例随径级增大先减小后增加,粗根和大根先增加后减小;同一径级中,细根的比根长远高于其他根系类型;思茅松各器官生物量分配大小比例为干枝根叶果,树干生物量均占全株生物量50%以上,各器官生物量随着径级的增大而增加,地上生物量和地下生物量之间呈显著正相关。思茅松单株地上部分生物量在2.23~324.95 kg,根生物量在0.52~41.80 kg,根颈、主根和侧根的生物量随径级增加而增加,根颈/主根、根颈/总根、侧根/主根与胸径和树高呈显著正相关,主根/总根与胸径和树高呈显著负相关;思茅松人工林各器官和总生物量异速生长模型的非线性回归与对数转换后的线性回归的AIC差值都大于2,误差为相乘型,选用线性模型更合适。各器官和总生物量线性模型的R_(adj)~2为0.661~0.992,除球果外,加入树高的模型能较好地拟合各器官与全株生物量。  相似文献   

9.
杉木观光木混交林细根的分布   总被引:12,自引:0,他引:12  
对27年生混交比例为2行杉木和1行观光木的混交林和杉木纯林群落细根分布的研究表明,杉木和观光行间的杉木细根密度虽比极木行间的低8.5%,但观光木细根密度则高152.09%,其细根总密度比杉木与杉木行间的大10.43%。混交林中杉木各径级活动根密度呈单峰型分布,均以5-10cm土层最大,而观光木各径级各活细根主要分布在0-10cm土层内。纯林杉木各径活细根密度亦基本呈单峰型分布,但峰值出现在10-20cm或20-30cm土层。不同树种不同径级死细根的分布均与其各自的活细根分布相似。混交林中灌木细根密度在30-40cm的土层最大,而纯林中的灌木细根集中于0-10cm的表土层;混交林和纯林中的草木细根均集中在0-5cm土层。与纯林的相比,混交林中杉木细根主要分布的土层明显上移,表层土壤细根所占比重增大,有利于更好利用土壤养分和提高群落生产力。  相似文献   

10.
徐满厚  刘敏  翟大彤  薛娴  彭飞  尤全刚 《生态学报》2016,36(21):6812-6822
在青藏高原高寒草甸布设模拟增温实验样地,采用土钻法于2012—2013年植被生长季获取5个土层的根系生物量,探讨增温处理下根系生物量在生长季不同月份、不同土壤深度的变化趋势及其与相应土层土壤水分、温度的关系。结果表明:(1)根系生物量在2012年随月份呈增加趋势,其中7—9月较大,其平均值在对照、增温处理下分别为3810.88 g/m~2和4468.08 g/m~2;在2013年随月份呈减小趋势,其中5—6月较大,其平均值在对照、增温处理下分别为4175.39 g/m~2和4141.6 g/m~2。增温处理下的总根系生物量高出对照处理293.97 g/m~2,而各月份总根系生物量在处理间的差值均未达到显著水平。表明在增温处理下根系生物量略有增加,但在生长季不同月份其增加的程度不同,致使年际间的增幅出现差异。(2)根系生物量主要分布在0—10 cm深度,所占百分比为50.61%。在增温处理下,0—10 cm深度的根系生物量减少,减幅为8.38%;10—50 cm深度的根系生物量增加,增幅为2.1%。相对于对照处理,增温处理下0—30 cm深度的根系生物量向深层增加,30—50 cm深度的根系生物量增加趋势略有减缓。可见,在增温处理下根系生物量的增幅趋向于土壤深层。(3)根系生物量与土壤水分呈极显著的递减关系,在增温处理下线性关系减弱;与土壤温度呈极显著的递增关系,在增温处理下线性关系增强。表明土壤水分、温度都可极显著影响根系生物量,但在增温处理下土壤温度对根系生物量的影响较土壤水分更为敏感而迅速。  相似文献   

11.
根系是植物吸收土壤水分和养分的重要器官, 驱动着多个生态系统过程, 该研究揭示了实验增温对根系生物量的影响及机制, 可为气候变暖背景下土壤碳动态和生态系统过程的变化提供理论依据。该研究从已发表的151篇国内外研究论文中收集到611组数据, 通过整合分析(meta-analysis)方法研究了实验增温对根系生物量(根系总生物量、粗根生物量、细根生物量、根冠比)的影响, 并探讨了增温幅度、增温年限、增温方式的影响, 以及根系生物量对增温的响应与本底环境条件(生态系统类型、年平均气温、年降水量、干旱指数)的关系。结果表明: (1)模拟增温使细根生物量显著增加8.87%, 而对根系总生物量、粗根生物量、根冠比没有显著影响; (2)中等强度增温(1-2 ℃)使得细根生物量和根冠比分别提高14.57%和23.63%; 中短期增温实验(<5年)对细根生物量具有促进影响, 而长期增温实验(≥5年)使细根生物量有降低的趋势; 开顶箱增温和红外辐射增温分别使细根生物量显著提高了17.50%和12.16%, 而电缆加热增温使细根生物量和粗根生物量显著降低了23.44%和43.23%; (3)不同生态系统类型对于增温响应不一致, 模拟增温使苔原生态系统细根生物量显著提高了21.03%, 细根生物量对增温的响应与本底年平均气温、年降水量、干旱指数均呈显著负相关关系。  相似文献   

12.
不同林龄杨树细根生物量分配及其对氮沉降的响应   总被引:1,自引:0,他引:1  
氮沉降已经成为全球变化背景下的热点问题,并呈现逐渐加重趋势,了解森林生态系统对这种持续氮增长和快速氮循环的响应模式及反馈机制,对于维护森林生态系统健康具有重要的理论意义。本研究选择不同林龄杨树人工林作为试验样地,设置N0(0 g N·m-2·a-1)、N1(5 g N·m-2·a-1)、N2(10 g N·m-2·a-1)、N3(15 g N·m-2·a-1)、N4(30 g N·m-2·a-1)5个不同浓度,进行氮沉降野外模拟实验,探讨不同林龄杨树人工林细根生物量的垂直分布及对模拟氮沉降的响应。结果表明:(1)70%~80%细根生物量分配在0~20 cm土层,呈现表层富集特征;外源氮增加后,幼龄林(4年生)中,0~10 cm土层细根生物量所占比例有所增加,而中龄林(8年生)和成熟林(15年生)则不同程度的减少;(2)细根生物量主要分布在0~0.5和0.5~1.0 mm径级,其中0~0.5 mm径级细根约占总细根(2.0 mm)生物量的50%,外源氮输入增加极小径级(0~0.5 mm)的根系生物量,特别是幼龄林;(3)30~40 cm土层中,成熟林0~0.5 mm细根生物量分配量远大于幼龄林和中龄林,表明随着林龄的增加,小直径细根有向下分配趋势;(4)林龄、土层、径级以及施氮浓度4个因素的综合效应能够解释细根生物量66.3%的变异,其中林龄、土层、径级3个因素各自对细根生物量的影响极显著(P0.01),分别能解释细根生物量17.6%、16.1%、10.4%的变异,而增氮处理仅能解释细根生物量0.24%的变异,影响效应不显著(P0.05)。  相似文献   

13.
土壤增温对杉木幼苗细根生理生态性质的影响   总被引:1,自引:0,他引:1  
为了揭示我国最重要人工林树种杉木对全球变暖的地下响应及其适应性,通过在福建省三明市陈大国有林场设置杉木(Cunninghamia lanceolata)幼苗土壤增温实验(增温+5℃和不增温两个处理,各5个重复),用土钻法和内生长环法探讨土壤增温约1年后的杉木幼苗细根生物量和形态特征(比根长,SRL;比表面积,SRA),化学计量学特征(C、N、P)和代谢特征(包括呼吸和非结构性碳水化合物,NSC)的变化。结果表明:1)与对照相比,土壤增温处理0—1 mm细根生物量显著下降,1—2 mm细根生物量没有变化,细根形态亦未有显著变化;2)土壤增温处理细根N浓度显著增加,细根P浓度没有显著变化,细根C/N显著降低而N/P显著增加;3)土壤增温处理细根呼吸没有出现驯化现象,细根NSC显著下降。可见,土壤增温改变了杉木细根生物量分配格局,并引起一定的营养失衡和代谢失衡现象,从而对杉木生长和生产力产生影响。  相似文献   

14.
杉木幼苗和伴生植物细根对土壤增温的生理生态响应   总被引:2,自引:0,他引:2  
为揭示全球变暖背景下杉木人工林幼苗与其伴生的其它植物间的对土壤养分的竞争关系和适应性,本研究采用埋设加热电缆进行土壤增温(+5℃)技术,在福建省三明市陈大国有采育场内建立杉木(Cunninghamia lanceolata)幼苗试验小区,包括对照(NW)与增温(WNW)处理(均不除草)。采用内生长环法与土钻法相结合,测定增温对杉木幼苗及伴生的其他植物(主要为山油麻Helicteres angustifolia、东南野桐Mallotus lianus)等细根生物量、呼吸、形态、及根组织氮浓度的短期影响。结果表明,(1)增温显著降低了杉木1mm细根生物量,而显著增加了其他植物1mm细根生物量。增温显著提高了其他植物1mm细根的氮浓度,显著降低了其比根长(SRL)和比表面积(SRA);同时降低了比根呼吸(参比温度18℃,SRR_(18)),表明细根呼吸对增温产生了驯化现象。而增温对杉木细根的氮浓度没有显著影响,却显著提高了1mm细根比表面积;同时增温对杉木SRR_(18)没有显著影响,表明杉木细根呼吸没有产生驯化现象。(2)SRR_(18)与比根长间的关系受到增温的显著影响,但树种以及增温×树种的交互作用没有显著影响,表明杉木和其他植物细根竞争能力与维持成本间的平衡关系均受到增温的共同影响。综上结果显示,相较于杉木,伴生的其他植物在增温环境中对地下资源的竞争具有更强的优势,能通过增加细根生物量迅速抢夺吸收因增温而加速矿化的土壤养分,同时通过生理和形态的调整,减少根系单位质量的维持成本,从而提高其对全球变暖的适应性;而杉木在增温条件下面临其他植物的强烈竞争,细根生物量降低,处于不利地位,为了满足生长所需,需增大比根长和比根表面积,且因细根呼吸没有产生驯化现象,从而增加了细根单位质量的维持成本,说明杉木对全球变暖的适应性低于其他植物。该研究结果对于全球变暖下杉木人工林的管理具有重要意义。  相似文献   

15.
施肥对日本落叶松人工林细根生物量的影响   总被引:7,自引:1,他引:6  
以辽宁东部山区16年生日本落叶松人工林为研究对象,探讨施肥对落叶松细根总生物量、不同层次生物量及不同根序生物量的影响.结果表明,与对照相比,施氮肥显著降低细根总生物量(P<0.01),而施磷肥及施氮+磷肥处理的细根总生物量差异不显著(P>0.05).落叶松人工林表层土壤(0~10 cm)细根生物量明显高于亚表层(10~20 cm)(P<0.01),各处理样地表层生物量占总生物量的64%~73%.施肥对不同层次、不同级别根序细根生物量的影响不同.与对照相比,施氮肥显著地降低了表层土壤1、3、4、5级根生物量(P<0.05),施磷肥(5级根除外)、施氮+磷肥(2级根除外)表层土壤各级根序细根生物量降低均不显著(P>0.05).在亚表层土壤,施氮肥和磷肥对各级根序生物量均没有显著影响(P>0.05);施氮+磷肥显著增加了1级根生物量(P<0.05),而其余各级根序细根生物量差异不显著(P>0.05).  相似文献   

16.
梯田埂坎立地植物根系分布特征及其对土壤水分的影响   总被引:18,自引:1,他引:17  
在标准株选择的基础上,采用整株挖掘法研究活性根的特征,采用旱季0~200cm土层土壤水分定点观测的方法观测土壤含水量,并籍此计算土壤水分相对亏缺值来描述梯田埂坎附近土壤水分的变化。研究显示,4个植物种在根系深度、生物量和根长分布、对土壤水分的影响方面具有不同的特征。柽柳根系深达757cm,根系生物量和根长在0~100cm土层范围内均匀减少。但粗根在整个根系中占支配地位,细根的生物量和根长主要集中在0~40cm土层中。杞柳根系分布在0~40cm土层中,占全部根系生物量的86.0%。但粗根占绝对优势。40cm以下土层中(杞柳根系分布的最大深度为305cm)根系生物量和根长逐渐下降,但细根长度超过粗根。杞柳的部分根系分布高于着生平面,而且这部分根系中细根占绝对优势。柠条的根系分布特征与杞柳相似,但粗根的比例大于杞柳。新疆杨根系分布较浅,最大深度仅为136cm。在0~40cm土层中,新疆杨根系生物量占总根系生物量的77.2%。60cm土层以下根系生物量急剧下降,根长在80cm以下同样急剧减少。在新疆杨的整个根系分布层中,虽然粗根在生物量上占优势,但细根长度远大于粗根。研究结果还显示,栽植不同植物种的埂坎附近水平范围内存在明显的土壤水分亏缺。柽柳埂坎、杞柳埂坎、拧条埂坎、新疆杨埂坎的水分亏缺范围分别为230cm,437cm,274cm和399cm。垂直范围内,在4个测点均有一个土壤水分从表层往下增加的土层,该层在30~70cm范围内变化,只是随距埂坎的距离和植物种不同而不同。增加层以下,土壤水分开始持续下降至70cm到200cm土层,具体的下降深度也因植物种和距埂坎的距离不同而不同。建议,(1)根系深、对土壤水分影响较小的柽柳是黄土高原地区较为理想的农林复合树种;(2)杞柳应栽植在梯田软硬埂的结合部,约在梯田埂坎高度的1/3到2/3处,并且采取及时平茬和秋粮作物配置的方法调控系统的竞争关系;(3)柠条可采取与杞柳相似的栽植和调控办法;(4)根系分布浅、对水分影响较大的新疆杨,除栽植在埂坎顶部外成活比较困难,不是合适的埂坎栽植树种。  相似文献   

17.
甘肃景电灌区不同栽植年限枸杞生物量分配特征   总被引:2,自引:0,他引:2  
枸杞(Lycium barbarum L.)常作为我国干旱区盐渍化土地开发利用中的首选灌木型经济林,研究枸杞各构件及根系生物量的分配特征可以为提高枸杞生产力及资源的持续利用提供理论依据.在甘肃景电灌区选择栽植4年、7年和11年的构杞,研究构杞枝条、果实、叶片生物量在垂直空间上的分布特征,并按地下根系径级的大小,研究了根系生物量在各径级的分配规律.结果表明:构杞栽植初期植株间高度、冠幅差异较小,栽植7年进入生长旺盛期后差异较大,而栽植11年个体间形态指标差异又减小.栽植4年、7年、11年的构杞总生物量及枝条生物量在50 ~ 100 cm空间最大,而栽植4年的果实及叶片生物量最大值在50~100 cm空间,栽植7年时果实及叶片生物量最大值在100 ~ 150 cm空间.4年生与7年生构杞粗根和细根生物量所占的比例均比较大,11年生时细根的生物量比例明显减小,而粗根的比例则超过了50%.果实与叶片以及中根与粗根的生物量均随栽植年限的增加而增加,但枝条以及细根和极细根的生物量为7年生>11年生>4年生.用二次函数可以较好地预测该区域枸杞叶片及地下根系各径级生物量与生长年限之间的关系.  相似文献   

18.
唐国  胡雷  宋小艳  李香真  王长庭 《生态学报》2022,42(15):6250-6264
根系是草原生态系统中最重要的碳库之一,分析高寒草甸植物群落生物量和地下不同径级根系碳分配特征及根系的生长特征对降雨变化的响应,有利于了解全球变化背景下高寒草甸植物根系、土壤碳氮循环及其过程。采用微根管技术原位监测5种降雨处理下(增雨50%:1.5P、自然降雨:1.0P、减雨30%:0.7P、减雨50%:0.5P、减雨90%:0.1P)高寒草甸植物群落和根系属性(现存量、生产量、死亡量、根系寿命和周转速率)的变化特征,结果表明:(1)降雨变化对地上植物群落生物量无显著影响,但0.5P和0.1P显著增加禾本科生物量(P<0.05)。(2)总根系现存量在处理间无显著差异,但随着降雨量减少呈先增加后降低的趋势。土层间不同径级根系现存量差异显著,0-10 cm土层1.5P和0.7P1级根现存量显著增加,2级和3级根现存量显著降低;在10-20 cm土层,1.0P2级根系现存量显著高于其余处理(P<0.05)。(3)总根生产量与死亡量随降雨减少而降低,在0-10 cm土层,1.0P总根生产量和死亡量最高,0.1P显著降低了1级根生产量(P<0.05)。(4)0.1P显著增加10-20 cm土层1级根和总根寿命(P<0.05)。(5)根系周转随降雨量减少呈降低趋势,但无显著差异(P>0.05)。(6)结构方程模型进一步表明:根系现存量和生产量受土层和水分的直接影响,土层和养分对根系周转有负效应。综上所述,降雨量的变化并未显著改变地下总根系生物量,但少量降雨变化(0.7P、1.5P)会降低植物对2、3级根生物量的分配,投入更多资源以促进1级根的生长;而水分下降至轻度水分胁迫(0.1P),植物会减少地下各径级根系生物量的分配,保持低根系生物量消耗和低根系生长来维持其正常的生长状态,完成其正常的生态功能。  相似文献   

19.
细根是植物吸收水分和养分的主要器官。全球变暖背景下,研究森林细根生物量及其环境因子的变化对生态系统碳平衡、碳收支及其贡献率具有重要意义。采用土钻法和室内分析法对青海省森林6个海拔梯度上5种林分类型的细根生物量和土壤理化性质进行测定,并分析了与环境因子之间的相互关系。结果表明:(1)青海省森林0—40 cm土层总细根生物量平均为8.50 t/hm~2,随着海拔梯度的增加先降低后升高,不同海拔梯度细根生物量差异显著(P0.05),最大值出现在2100—2400 m处。(2)5种林分0—40 cm土层总细根生物量为:白桦白杨云杉圆柏山杨,不同林分间细根生物量差异不显著。(3)细根垂直分布随土层深度增加而减少,且70%的细根集中在表层(0—20 cm)。(4)土壤容重深层(20—40 cm)显著大于表层(P0.05),并随海拔梯度逐步增加,且林分间差异较大。(5)全碳(Total carbon, TC)、全氮(Total nitrogen, TN)、全磷(Total phosphorus, TP)含量表层显著高于深层。TC、TN随海拔升高先增后降低,TP则随海拔逐步降低。不同林分间土壤养分差异较明显。(6)结构方程模型分析得到海拔、土层、容重直接影响细根生物量,细根生物量直接影响土壤养分。林分类型通过土壤容重间接影响细根生物量。因此,林分和海拔通过影响土壤微环境而影响到细根生物量及其空间分布格局。  相似文献   

20.
韦兰英  上官周平 《生态学报》2006,26(11):3740-3748
研究了黄土区不同演替阶段草地植被细根垂直分布特征与土壤环境的关系,结果表明不同演替阶段草地植被细根生物量、根长密度、表面积、直径和比根长均具有明显的垂直分布特征。细根生物量、根长密度和细根表面积一般随土层加深而逐渐减少,且集中分布于0-40cm土层;随着演替的进行,除20a弃耕地外,0—80cm土层细根生物量、根长密度和细根表面积逐渐增加;除25a弃耕地外,细根直径随演替进行逐渐减小。0~100cm土层土壤含水量随演替进行而增加,不同演替阶段深层土壤水分较表层稳定。土壤容重的变化趋势为9〈4〈15〈20〈25a弃耕地,根系对表层土壤水分和容重的影响较大,而对深层土壤水分与容重影响较少。不同演替阶段细根各参数和土壤水分、容重差异均达到显著水平。各弃耕地细根参数之间,细根参数和土壤环境因子之间存在不同程度的相关关系,土壤含水量在草本植被的不同演替阶段均是影响其细根垂直分布的关键因素。土壤容重在演替早期对草本植被根系的影响较小,随着演替进行其影响作用进一步增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号