首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
拟南芥矮小丛生突变体的分离与分子鉴定   总被引:2,自引:0,他引:2  
顶端优势是指侧生分生组织的生长被主茎或主花序所抑制。最近的研究通过分离和鉴定顶端优势发生改变的突变体开始揭示顶端优势的分子机制。通过T-DNA标签法分离了拟南芥矮小丛生(bushy and dwarf l,budl)突变体。突变体植株的表型包括顶端优势丧失、株型矮小,表明budl突变体存在生长素代谢、运输或信号传导的缺陷。一个对生长素特异反应的启动子驱动的报告基因在budl中表达模式改变。生长素敏感性和运输能力的测定表明这两个过程在budl中均正常。以上结果显示budl表型是生长素代谢缺陷的结果。遗传分析表明BUDI为半显性突变且与一个T-DNA插入共分离,可通过iPCR方法分离。  相似文献   

2.
在筛选拟南芥(Arabidopsisthaliana L.)叶突变体的过程中获得拟南芥upright rosette(uro)突变体.uro为半显性突变体,因突变体在幼苗生长期莲座叶竖直生长而得名.对uro突变体的表型进行了详细的分析,结果表明:uro突变不仅造成叶生长模式的改变,还出现多种其他异常表型.uro杂合和纯合突变体都表现出植物顶端优势的丧失,纯合突变体表现得更为严重.uro纯合突变体的一些二级分枝会被叶取代,这种叶的叶柄与叶片远轴面连接.突变体的花发育也有多种异常表型,主要表现为花瓣及雄蕊数目的改变、花器官的同源异型转化和不同花器官的融合.uro突变体茎软,细胞学水平分析表明突变体的内皮层组织发生增生,束间纤维发育及维管束分化受阻.顶端优势的丧失及维管组织的异常发育表明,URO基因可能参与生长素对植物发育的调节.pin1 uro双突变体表型的分析表明,虽然双突变茎表型出现了两亲本表型的叠加,但双突变体的花却出现了新的表型,说明URO-与PIN1基因在调节植物发育过程中具有部分遗传上的相互作用,这一结果进一步证明URO基因参与了生长素调节的植物发育过程.  相似文献   

3.
主要研究1个由Ds插入所造成的大片段缺失拟南芥突变体tgd(ten gene deletion).这个突变体来自于基因陷阱拟南芥突变体库.对这一突变体的后代卡那霉素抗性分离比分析和Southern杂交表明,只有1个Ds拷贝插入此突变体基因组中,但是Tail-PCR和随后用特异基因序列为引物的验证PCR证实在Ds插入过程中造成了30 kb基因片段的缺失.根据对拟南芥基因组序列的注释,这30 kb的序列中包含10个基因.这一多基因缺失突变体有多效性表型.整株表现为株型矮小,发育迟缓,根系不发达,极易失水而死,茎细弱,较短,花序不正常.其中,莲座叶的表型最为明显,突变体叶形较细,叶片较厚.为了研究这些基因在多效性表型产生中所发挥的功能,对来自ABRC种子库中所有基因的T-DNA插入突变体,即salk line的表型进行了分析,发现所有基因的T-DNA插入突变体均没有可见的表型.这一现象暗示,突变体tgd的表型是10个基因缺失的综合效应,但是10个基因的相互关系以及与tgd表型的相互关系仍有待于继续研究.  相似文献   

4.
在筛选拟南芥(ArabidopsisthalianaL.)叶突变体的过程中获得拟南芥uprightrosette(uro)突变体。uro为半显性突变体,因突变体在幼苗生长期莲座叶竖直生长而得名。对uro突变体的表型进行了详细的分析,结果表明uro突变不仅造成叶生长模式的改变,还出现多种其他异常表型。uro杂合和纯合突变体都表现出植物顶端优势的丧失,纯合突变体表现得更为严重。uro纯合突变体的一些二级分枝会被叶取代,这种叶的叶柄与叶片远轴面连接。突变体的花发育也有多种异常表型,主要表现为花瓣及雄蕊数目的改变、花器官的同源异型转化和不同花器官的融合。uro突变体茎软,细胞学水平分析表明突变体的内皮层组织发生增生,束间纤维发育及维管束分化受阻。顶端优势的丧失及维管组织的异常发育表明,URO基因可能参与生长素对植物发育的调节。pin1uro双突变体表型的分析表明,虽然双突变茎表型出现了两亲本表型的叠加,但双突变体的花却出现了新的表型,说明URO与PIN1基因在调节植物发育过程中具有部分遗传上的相互作用,这一结果进一步证明URO基因参与了生长素调节的植物发育过程。  相似文献   

5.
水稻T-DNA插入突变体库的筛选及遗传分析   总被引:4,自引:1,他引:3  
T-DNA标签技术是分离和研究植物功能基因的有效方法,寻找T-DNA插入表型突变体是进一步开展研究的关键所在。文章对以ZH11、ZH15为受体亲本构建的4416份T,代标签系进行了表型鉴定,发现存在拟纯合突变和系内分离突变两种类型,突变表型涉及株高、生育期、叶形、叶色、分蘖力、植株松紧度、穗颈节、穗形、颖花、粒形、类病变、雄性不育、生长极性等14类性状。其中,株高、生育期、叶色、雄性不育有着相对较高的突变频率(超过1%),株高和叶色的突变频率在品种及年度间表现稳定,而生育期、雄性不育波动较大,表明这类性状的表型易受到环境的影响。通过T1、T2连续世代的共分离分析,筛选出3个与穗部或颖花发育相关的T-DNA插入突变体,为分离相关功能基因奠定基础。随机选择42份有表型突变的标签系,通过质粒拯救和TAIL-PCR的方法分离其侧翼序列,从39个标签系中获得40条序列,其中25条为载体序列,14条与水稻基因组有很好的同源性,BlastN分析结果表明T-DNA有优先整合进植物功能基因内部的特性。  相似文献   

6.
化学诱导激活型拟南芥突变体库的构建及分析   总被引:17,自引:0,他引:17  
利用化学诱导激活XVE(LexA-VP16-ER)系统构建了一个包含40000余个独立转化株系的拟南芥突变体库,并对其中的18000余个株系进行了初步的遗传学和表型分析鉴定。卡那霉素抗性分离比表明,51.6%的株系为单位点插入株系,T-DNA插入的平均拷贝数为每株系1.38个。部分T1代和T2代植株表现出了可见的形态变异,包括下胚轴长度、根长度、植株大小和颜色、叶子颜色和形态、开花时间、种皮颜色及结实情况等对数个代表性突变株系表型及T—DNA插入位点侧翼序列进行了分析,结果表明突变体的表型是由于T—DNA的插入造成的,而且这些突变体中包括前人发现的AP2和AGAMOUS的等位基因。由于T-DNA标记或相邻的基因可被XVE系统诱导性的激活,或被T-DNA破坏导致功能缺失,该突变体库可以用于大规模筛选鉴定功能缺失性和功能获得性突变体。  相似文献   

7.
从已构建的水稻(Oryza sativa L.)T-DNA插入突变体中鉴定获得一株穗部额外发育出叶片的突变体,并根据该叶片的形态学位置将其命名为剑叶突变体(J4)。研究表明这种额外发育的叶片呈现明显的缺陷,主要表现为叶片短小、表皮细胞变小、叶片中维管束数目减少等。进一步通过TAIL-PCR和inverse-PCR的方法克隆该突变体中T-DNA插入位置的旁邻序列,从而准确地将T-DNA定位到2号染色体上。基因表达分析显示,T-DNA插入位置附近的AK100376基因在J4突变体以及表型类似突变体neck leaf 1中的表达均被明显下调,可初步将其确定为与剑叶突变体表型相关的候选基因。  相似文献   

8.
植物体根发育是一个复杂的过程,尽管对其研究颇多,但对其中的分子机制尚缺乏足够认识。以模式植物拟南芥(Arabidopsis thaliana)为研究材料,在T-DNA突变体库中分离到一个拟南芥根生长缺陷突变体rei1(root elongationinhi-bited1)。通过表型分析发现,rei1在生长发育方面与野生型存在明显的差异,突变体的根较野生型短,且角果较小,花出现部分的败育。对突变体进行显微结构分析,发现突变体的根在内部结构上表现为表皮及皮层细胞形态不规则,排列疏松且横向膨大。遗传学分析表明,rei1是单基因隐性突变且与一个T-DNA插入共分离,通过图位克隆的方法成功分离了缺失的候选基因。以上研究结果表明,REI1对植物的根发育具有非常重要的调节作用。  相似文献   

9.
以哥伦比亚(Columbia)野生型拟南芥(Arabidopsis thaliana)为实验材料,用含有激活标记双元质粒pCB260的农杆菌浸花进行转化,构建拟南芥T-DNA插入突变体库.通过突变体的筛选和表型分析,获得了两株光形态突变体,子叶下胚轴伸长的光抑制效应减弱.通过TAIL-PCR(thermal asymmetric interlaced-PCR)技术,成功扩增出突变植株T-DNA插入位点侧翼序列,经NCBI序列比对,T-DNA分别插在CRY1第一和第三外显子部位.突变体的表型分析及PCR鉴定结果表明,T-DNA插入CRY1并影响到突变植株的光形态建成.  相似文献   

10.
周晓云  王克荣 《菌物学报》2003,22(2):264-271
通过对菌株突变体有性杂交后代的检测方法,对串珠镰孢霉Fusariummoniliforme氮代谢过程中硝酸盐还原途径相关酶基因间关系进行研究。串珠镰孢霉含钼协同因子突变体缺陷型(nitB)与亚硝酸盐还原酶缺陷型突变体(nitC)间的杂交结果显示,在不同的交配群以及在相同交配群不同寄主上的分离菌株中,控制这两种酶的基因有两种类型,并据此提出细胞核基因和细胞质基因共同调控硝酸盐还原途径酶的假说。当杂交后代出现四种表型(nitD:nitB:nitC:wt=1:1:1:1)时,表明这两种酶的遗传受核基因调控,分离时两种基因自由组合;当杂交后代仅有两种表型时,表现为父本表型隐藏,双基因缺陷型(表型同主氮调节基因缺陷型nitD)表型不出现,即母本表现型:野生型为1:1,表明这种遗传类型除受核基因的控制外,还存在细胞质基因的影响。  相似文献   

11.
12.
During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us to test its mode of action in relation to these hypotheses. We found that exogenously applied strigolactone inhibited bud outgrowth in pea (Pisum sativum) even when auxin was depleted after decapitation. We also found that strigolactone application reduced branching in Arabidopsis (Arabidopsis thaliana) auxin response mutants, suggesting that auxin may act through strigolactones to facilitate apical dominance. Moreover, strigolactone application to tiny buds of mutant or decapitated pea plants rapidly stopped outgrowth, in contrast to applying N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, which significantly slowed growth only after several days. Whereas strigolactone or NPA applied to growing buds reduced bud length, only NPA blocked auxin transport in the bud. Wild-type and strigolactone biosynthesis mutant pea and Arabidopsis shoots were capable of instantly transporting additional amounts of auxin in excess of endogenous levels, contrary to predictions of auxin transport models. These data suggest that strigolactone does not act primarily by affecting auxin transport from buds. Rather, the primary repressor of bud outgrowth appears to be the auxin-dependent production of strigolactones.  相似文献   

13.
Apical dominance is the control exerted by the shoot apex over lateral bud outgrowth. The concepts and terminology associated with apical dominance as used by various plant scientists sometimes differ, which may lead to significant misconceptions. Apical dominance and its release may be divided into four developmental stages: (I) lateral bud formation, (II) imposition of inhibition on lateral bud growth, (III) release of apical dominance following decapitation, and (IV) branch shoot development. Particular emphasis is given to discriminating between Stage III, which is accompanied by initial bud outgrowth during the first few hours of release and may be promoted by cytokinin and inhibited by auxin, and Stage IV, which is accompanied by subsequent bud outgrowth occurring days or weeks after decapitation and which may be promoted by auxin and gibberellin. The importance of not interpreting data measured in Stage IV on the basis of conditions and processes occurring in Stage III is discussed as well as the correlation between degree of branching and endogenous auxin content, branching mutants, the quantification of apical dominance in various species (including Arabidopsis ), and apical control in trees.  相似文献   

14.
The classic Thimann-Skoog or auxin replacement apical dominance test of exogenous auxin repression of lateral bud outgrowth was successfully executed in both seedlings and older trees of white ash, green ash, and red oak under the following conditions: (1) decapitation of a twig apex and auxin replacement were carried out during spring flush, (2) the decapitation was in the previous season's overwintered wood, and (3) the point of decapitation was below the upper large irrepressible lateral buds but above the lower repressible lateral buds. Although it has been suggested that neither auxin, the terminal bud, nor apical dominance have control over the outgrowth of the irrepressible buds during spring flush, there is evidence in the present study that indicates that such control over the repressible buds exists. In seedlings, second-order branching, which resulted from decapitation of elongating current shoots, was also inhibited by exogenous auxin in the three species. Hence, the auxin replacement experiments did work on year-old proleptic buds (of branches of older trees) that would have entered the bud bank and also on current buds of seedlings. Cytokinin treatments were ineffectual in promoting bud growth.  相似文献   

15.
The effects of the auxin-inhibiting substances raphanusanin ((3R*,6S*)-3-[methoxy (methylthio) methyl]-2-pyrrolidinethione, raphanusanin B)and benzoxazolinone (6-methoxy-2-bezoxazolinone, MBOA) on apical dominance of pea(Pisum sativum L. cv. Alaska) seedlings were studied.Application of raphanusanin B or MBOA to the apical bud, internode, or lateralbud of pea seedlings released apical dominance in either intact orindole-3-acetic acid (IAA )-treated, decapitated plants. These results suggestthat the auxin-inhibiting substances raphanusanin B and MBOA have activity inreleasing apical dominance. Conversely, the auxin transport inhibitors2,3,4-triiodobenzoic acid (TIBA) and 1-naphthylphthalamic acid (NPA) did notstimulate lateral bud growth when they were applied directly to the lateralbud,although application to the apical bud or internode released apical dominance.Therefore, the mode of action of raphanusanin B and MBOA in apical dominance isclearly different from that of auxin transport inhibitors. Raphanusanin B andMBOA may suppress the synthesis of growth-inhibiting factor(s) of the lateralbud induced by endogenous auxin transported from the apical bud or exogenouslyapplied auxin, and/or the action of the factor(s).  相似文献   

16.
17.
Apical dominance   总被引:3,自引:0,他引:3  
Apical dominance is the control exerted by the apical portions of the shoot over the outgrowth of the lateral buds. The classical explanations for correlative inhibition have focused on hormone/nutrient hypotheses. The remarkable progress that has been made in the technology of endogenous hormone quantification in plant tissue has not been accompanied by comparable progress in the elucidation of mechanisms of hormone action in apical dominance. Evidence from hormonal studies suggests that apically produced auxin indirectly suppresses axillary bud outgrowth that is promoted by cytokinin originating from roots/shoots. Significant involvement with other hormones, although less likely, has not been ruled out. Possible changes in tissue sensitivity to hormones should not be overlooked. Auxin-induced oligosaccharide signals originating from the cell walls of shoot tips or polyamines may function as secondary inhibitors to bud growth. Alternatively, apically produced auxin may suppress lateral bud growth by inhibiting auxin export from these buds. Support for a critical role for nutrients in apical dominance keeps resurfacing, especially for auxin-directed nutrient transport and for water as a possible inducing signal for bud outgrowth. Histological and biochemical analyses of lateral buds recently released from apical dominance are urgently needed. The feasibility of manipulating endogenous auxin/cytokinin content in plant tissue by gene insertion and modulation opens the door to exciting approaches as does the use of hormone insensitive/resistant mutants. There is also need to recognize the existence of variability of apical dominance mechanisms among different plant types. The aesthetic and economic implications of understanding apical dominance for the modification of plant structure and form are extremely significant.  相似文献   

18.
One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time-frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号