首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 An AFLP genetic linkage map of flax (Linum usitatissimum) was used to identify two quantitative trait loci (QTLs) on independent linkage groups with a major effect on resistance to Fusarium wilt, a serious disease caused by the soil pathogen Fusarium oxysporum (lini). The linkage map was constructed using a mapping population from doubled-haploid (DH) lines. The DH lines were derived from the haploid component of F2 haploid-diploid twin seed originating from a cross between a polyembryonic, low-linolenic-acid genotype (CRZY8/RA91) and the Australian cultivar ‘Glenelg’. The AFLP technique was employed to generate 213 marker loci covering approximately 1400 cM of the flax genome (n=15) with an average spacing of 10 cM and comprising 18 linkage groups. Sixty AFLP markers (28%) deviated significantly (P<0.05) from the expected segregation ratio. The map incorporated RFLP markers tightly linked to flax rust (Melamspora lini) resistance genes and markers detected by disease resistance gene-like sequences. The study illustrates the potential of the AFLP technique as a robust and rapid method to generate moderately saturated linkage maps, thereby allowing the molecular analysis of traits, such as resistance to Fusarium wilt, that show oligogenic patterns of inheritance. Received: 8 December 1997 / Accepted: 7 April 1998  相似文献   

2.
Three single nucleotide polymorphism (SNP) sites in which amino acids had changed were detected by sequence analysis within the leucine-rich repeat (LRR) region of the Fom-2 gene. Cleaved amplified polymorphic sequence (CAPS) and allele-specific PCR (AS-PCR) methods were employed to explore the SNP validation linked to fusarium wilt resistance in the F1 and F2 generations simultaneously. Homozygous- and heterozygous-resistant genotypes and homozygous-susceptible genotype could be clearly distinguished using the CAPS method, and three detected SNP sites were observed to be linked to fusarium wilt resistance, with a segregation ratio of 1:2:1 in the F2 generation. In addition, heterozygous-resistant and homozygous-susceptible genotypes could be clearly distinguished in the F1 generation using the AS-PCR method, showing a 3:1 segregation in terms of resistant and susceptible genotypes in the F2 generation. We therefore developed SNP-based functional markers (FMs) and identified some melon germplasm resistant to fusarium wilt by FM analysis within melon species. In conclusion, the SNP-based FMs originating from the SNP site of the Fom-2 LRR region were determined to be linked to fusarium wilt resistance and showed promise in the enhancement of breeding in melon.  相似文献   

3.
The melon gene Fom-2, which confers resistance to Fusarium oxysporum f.sp. melonis (Fom) races 0 and 1, has been previously characterized by map-based cloning, and it encodes a protein with a nucleotide binding site (NBS) and leucine-rich repeats (LRRs). Here, we used the primer Fom2-LRR1639 to clone and sequence a partial LRR region of the Fom-2 gene in 11 melon accessions resistant to Fusarium wilt from various geographic regions. Our work revealed that the structure of the partial LRR domain is highly conserved between eight of these resistant accessions and is similar to the resistant allele in the previously characterized PI-161375 line. Conversely, PI-124111 is a unique line that presents the same resistant allele that was previously described in the MR-1 line. The accession Cum-355 presents a protein that differs from that encoded by both the resistant lines PI-161375 and MR-1. This result suggests that Cum-355 has a new resistant allele of Fom-2 that determines the same specificity. Importantly, based on the sequence of the Fom-2 LRR domain, two sequence characterized amplified region (SCAR) markers, Fom2-R408 and Fom2-S342, were developed for Fom-2 resistant and susceptible alleles, respectively. These allele-specific PCR markers could be used as co-dominant markers when their primer pairs were combined in a multiplex PCR reaction. The specificity of these functional markers (FM) was validated on a set of 27 genotypes representing several melon types. These FM markers are expected to enhance the reliability and cost-effectiveness of marker-assisted selection for the Fom-2 gene in melon.  相似文献   

4.
Fusarium wilt caused by Fusarium oxysporum f.sp. melonis is one of the most devastating diseases in melon production worldwide. The most effective control measure available is the use of resistant varieties. Identifying molecular markers linked to resistance genes can serve as a valuable tool for the selection of resistant genotypes. Bulked segregant analysis was used to identify markers linked to the Fom-2 genes, which confers resistance to races 0 and 1 of the fungal pathogen. Pooled DNA from homozygous resistant or homozygous susceptible progeny of F2 cross between MR-1 and AY was screened using 240 PstI/MseI and 200 EcoRI/MseI primer combinations to identify AFLP markers linked to Fom-2. Fifteen markers potentially linked to Fom-2 were identified, all with EcoRI/MseI primer pairs. These were mapped relative to Fom-2 in a backcross (BC) population of 60 progeny derived from MR-1 × AY with AY as recurrent parent. Two AFLP markers (ACT/CAT1 and AAC/CAT1) flanked the gene at 1.7 and 3.3 cM, respectively. Moreover, AFLP marker AGG/CCC and the previously identified RAPD marker 596-1 cosegregated with Fom-2. These two dominant markers were converted to co-dominant markers by designing specific PCR primers that produced product length polymorphisms between the parents. A survey of 45 melon genotypes from diverse geographic origins with the co-dominant markers demonstrated a high correlation between fragment size and the resistance phenotype. These markers may therefore be useful in marker-assisted breeding programs.  相似文献   

5.
A set of 118 simple sequence repeat (SSR) markers has been developed in melon from two different sources: genomic libraries (gSSR) and expressed sequence-tag (EST) databases (EST-SSR). Forty-nine percent of the markers showed polymorphism between the Piel de Sapo (PS) and PI161375 melon genotypes used as parents for the mapping populations. Similar polymorphism levels were found in gSSR (51.2%) and EST-SSR (45.5%). Two populations, F2 and a set of double haploid lines (DHLs), developed from the same parent genotypes were used for map construction. Twenty-three SSRs and 79 restriction fragment length polymorphisms (RFLPs), evenly distributed through the melon genome, were used to anchor the maps of both populations. Ten cucumber SSRs, 41 gSSRs, 16 EST-SSR, three single nucleotide polymorphism (SNP) markers, and the Nsv locus were added in the DHL population. The maps developed in the F2 and DHL populations were co-linear, with similar lengths, except in linkage groups G1, G9, and G10. There was segregation distortion in a higher proportion of markers in the DHL population compared with the F2, probably caused by selection during the construction of DHLs through in vitro culture. After map merging, a composite genetic map was obtained including 327 transferable markers: 226 RFLPs, 97 SSRs, three SNPs, and the Nsv locus. The map length is 1,021 cM, distributed in 12 linkage groups, and map density is 3.11 cM/marker. SSR markers alone cover nearly 80% of the map length. This map is proposed as a basis for a framework melon map to be merged with other maps and as an anchor point for map comparison between species of the Cucurbitaceae family.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Production of “Egusi” melon (Colocynthis citrullus L.) in West Africa is limited by fungal diseases, such as Alternaria leaf spot and Fusarium wilt. In order to engineer “Egusi” resistant to these diseases, cotyledonary explants of two “Egusi” genotypes, ‘Ejagham’ and NHC1-130, were transformed with Agrobacterium tumefaciens strain EHA101 harbouring wasabi defensin gene (isolated from Wasabia japonica L.) in a binary vector pEKH1. After co-cultivation for 3 days, infected explants were transferred to MS medium containing 100 mgl−l kanamycin to select transformed tissues. After 3 weeks of culture, adventitious shoots appeared directly along the edges of the explants. As much as 19 out of 52 (36.5%) and 25 out of 71 (35.2%) of the explants in genotype NHC1-130 and ‘Ejagham’, respectively, formed shoots after 6 weeks of culture. As much as 74% (14 out of 19) of the shoots regenerated in genotype NHC1-130 and 72% (18 out of 25) of those produced in genotype ‘Ejagham’ were transgenic. A DNA fragment corresponding to the wasabi defensin gene or the selection marker nptII was amplified by PCR from the genomic DNA of all regenerated plant clones rooted on hormone-free MS medium under the same selection pressure, suggesting their transgenic nature. Southern blot analysis confirmed successful integration of 1–5 copies of the transgene. RT-PCR, northern and western blot analyses revealed that wasabi defensin gene was expressed in transgenic lines. Transgenic lines showed increased levels of resistance to Alternaria solani, which causes Alternaria leaf spot and Fusarium oxysporum, which causes Fusarium wilt, as compared to that of untransformed plants.  相似文献   

7.
Melon necrotic spot virus (MNSV) is a member of the genus Carmovirus, which produces severe yield losses in melon and cucumber crops. The nsv gene is the only known natural source of resistance against MNSV in melon, and confers protection against all widespread strains of this virus. nsv has been previously mapped in melon linkage group 11, in a region spanning 5.9 cM, saturated with RAPD and AFLP markers. To identify the nsv gene by positional cloning, we started construction of a high-resolution map for this locus. On the basis of the two mapping populations, F2 and BC1, which share the same resistant parent PI 161375 (nsv/nsv), and using more than 3,000 offspring, a high-resolution genetic map has been constructed in the region around the nsv locus, spanning 3.2 cM between CAPS markers M29 and M132. The availability of two melon BAC libraries allowed for screening and the identification of new markers closer to the resistance gene, by means of BAC-end sequencing and mapping. We constructed a BAC contig in this region and identified the marker 52K20sp6, which co-segregates with nsv in 408 F2 and 2.727 BC1 individuals in both mapping populations. We also identified a single 100 kb BAC that physically contains the resistance gene and covers a genetic distance of 0.73 cM between both BAC ends. These are the basis for the isolation of the nsv recessive-resistance gene.  相似文献   

8.
AFLP and CAPS linkage maps of Cryptomeria japonica   总被引:7,自引:0,他引:7  
We have used two DNA marker systems, AFLP and CAPS, in a two-way pseudo-testcross strategy applied to an F1 population to construct genetic linkage maps of two local sugi cultivars. The AFLP markers detected about eight polymorphisms per parent per primer combination. Using 38 primer combinations, 612 AFLPs were detected in ’Haara 4’ and ’Kumotooshi’, of which 305 segregated in a 1:1 ratio (P>0.05). A total of 91 markers (83 AFLP and 8 CAPS) in ’Haara 4’ and 132 (123 AFLP and 9 CAPS) in ’Kumotooshi’ were distributed among 19 and 23 linkage groups, respectively, each of which included 2–17 markers. Maps of ’Haara 4’ and ’Kumotooshi’ spanned 1266.1 cM and 1992.3 cM, and covered approximately 50% and 80% of the sugi genome, respectively. Sequences derived from cDNA, which were previously used to construct a sugi linkage map, were also placed on our linkage maps as CAPS markers. Where a ’two-way pseudo-testcross’ is used, more than half of the sugi CAPS developed can be used to construct linkage maps for each parental family. The saturation of mapped markers, and the integration of several linkage maps derived from different mapping populations, is anticipated in the near future. Received: 15 August 1999 / Accepted: 27 August 1999  相似文献   

9.
In melon, the Fom-1 gene confers monogenic resistance against the soil-borne fungus Fusarium oxysporum f. sp. melonis, races 0 and 2, while the closely linked Prv gene specifies resistance against the papaya ring spot virus. Markers linked to these resistance (R) genes were identified using two recombinant inbred line populations, derived from crosses between Cucumis melo Védrantais and C. melo PI 161375, and between C. melo Védrantais and C. melo PI 414723, respectively. Using bulked segregant analysis, as well as systematic scoring of the mapping populations, we developed two amplified fragment length polymorphism markers, two random amplified polymorphic DNA markers and five restriction fragment length polymorphism (RFLP) markers linked to this locus. Four of the RFLP sequences bear homology to nucleotide-binding site–leucine-rich repeat R genes, indicating the presence of a significant R-gene cluster in this locus. Our study provides the most closely linked markers published so far for these important traits. It also improves the resolution of the whole linkage group IX, which was difficult to order in our previous studies. Two of the markers were converted to cleaved amplified polymorphic sequence markers to facilitate their application in marker-assisted selection. Testing these two markers in several melon lines revealed different marker haplotypes in the melon germplasm and supported multiple, independent origin of the Fusarium races 0 and 2 resistance trait.  相似文献   

10.

During years 2001, 2002 and 2003 the gravity of the Fusarium wilt in 1000 hectares of melon culture was evaluated in Colima (Mexico). In spite of the soil disinfections with methyl bromide, the losses could reach 25% of the final production. The analysis of 4 soil samples from the fields with ill plants, in a selective medium for Fusarium, allowed to detect the presence of F. oxysporum. By means of the presented technique “soil phytopathometry”, 31 isolates of F. oxysporum f. sp. melonis were obtained from the soil samples. The isolates were inoculated on melon plants to evaluate their pathogenicity. The 31 isolates inoculated, produced the symptoms of chlorosis and wilting, in melon cultivars that allowed us to affirm that all isolates were race 1 of F. oxysporum f. sp. melonis. Being this the first news of the presence of F. oxysporum f. sp. melonis in the state of Colima (Mexico).  相似文献   

11.
The stele (root vascular cylinder) in plants plays an important role in the transport of water and nutrients from the root to the shoot. A quantitative trait locus (QTL) on rice chromosome 9 that controls stele transversal area (STA) was previously detected in an F3 mapping population derived from a cross between the lowland cultivar ‘IR64’, with a small STA, and the upland cultivar ‘Kinandang Patong’, with a large STA. To identify the gene(s) underlying this QTL, we undertook fine mapping of the locus. We screened eight plants from BC2F3 lines in which recombination occurred near the QTL. Progeny testing of BC2F4 plants was used to determine the genotype classes for the QTL in each BC2F3 line. Accordingly, the STA QTL Sta1 (Stele Transversal Area 1) was mapped between the InDel markers ID07_12 and ID07_14. A candidate genomic region for Sta1 was defined more precisely between markers RM566 and RM24334, which delimit a 359-kb interval in the reference cultivar ‘Nipponbare’. A line homozygous for the ‘Kinandang Patong’ allele of Sta1 had an STA approximately 28.4% larger than that of ‘IR64’. However, Sta1 did not influence maximum or total root length, suggesting that this QTL specifically controls STA.  相似文献   

12.
Different factors affect the quality of melon fruit and among them long shelf life is critical from the consumer’s point of view. In melon, cultivars showing both climacteric and non-climacteric ripening types are found. In this study we have investigated climacteric ripening and fruit softening using a collection of near-isogenic lines (NILs) derived from the non-climacteric melon parental lines PI 161375 (SC) and “Piel de Sapo” (PS). Surprisingly, we found that QTL eth3.5 in NIL SC3-5b induced a climacteric-ripening phenotype with increased respiration and ethylene levels. Data suggest that the non-climacteric phenotypes from PI 161375 and “Piel de Sapo” may be the result of mutations in different genes. Several QTLs for fruit flesh firmness were also detected. Candidate genes putatively involved in ethylene regulation, biosynthesis and perception and cell wall degradation were mapped and some colocations with QTLs were observed. These results may provide additional data towards understanding of non-climacteric ripening in melon.  相似文献   

13.
Fusarium wilt is a widespread and serious chickpea disease caused by the soil-borne fungus Fusarium oxysporum f.sp. ciceri (Foc). We evaluated an F9 recombinant inbred line population of chickpea for resistance to three Foc races (1, 2 and 3) in pot culture experiments and identified flanking and tightly linked DNA markers for the resistance genes. The simple sequence repeat markers H3A12 and TA110 flanked the Foc1 locus at 3.9 and 2.1 cM, respectively, while Foc2 was mapped 0.2 cM from TA96 and 2.7 cM from H3A12. The H1B06y and TA194 markers flanked the Foc3 locus at 0.2 and 0.7 cM, respectively. These markers were also validated using 16 diverse chickpea genotypes. Identification of tightly linked flanking markers for wilt resistance genes will be useful for their exploitation in breeding programs and to understand the mechanism of resistance and evolution of the genes. S. J. M. Gowda and P. Radhika contributed equally to this study.  相似文献   

14.
A doubled haploid line (DHL) population of melon derived from a cross between the Korean cultivar “Songwhan Charmi” accession PI161375 (SC), included in the horticultural group conomon, and the Spanish cultivar “Piel de Sapo” (PS), included in the horticultural group inodorus, was used to develop a collection of near isogenic lines (NILs). These parental lines represent very different melon cultivar groups, with important differences at fruit, plant, disease response and molecular level. This cross is one of the most polymorphic ones within melon germplasm. Selected DHLs were backcrossed to PS and further backcrossing and selfing was performed, monitoring introgressions from SC using molecular markers covering the melon genetic map. A final collection of 57 NILs was obtained, containing a unique independent introgression from SC in the PS genetic background. The introgressions within the collection cover at least 85% of the SC genome with an average introgression size of 41 cM, corresponding to 3.4% of the SC genome. The average resolution for mapping genes or quantitative trait loci is 18.90 cM. This set of NILs is a potentially powerful tool for the study of quantitative trait locus involved in melon fruit quality and other important complex traits, and the introduction of new genetic variability in modern cultivars from exotic sources. The NILs can also be used as pre-competitive breeding lines in melon breeding projects.  相似文献   

15.
 Genetic maps facilitate the study of genome structure and evolution, and the identification of monogenic traits or Mendelian components of quantitative traits. We evaluated 228 RAPD, microsatellite and AFLP markers for linkage analysis in melon (Cucumis melo L.) varieties MR-1 (resistant to Fusarium wilt, powdery and downy mildews) and Ananas Yokneum (AY; susceptible to these diseases) and constructed a detailed genetic map. The mapping population consisted of 66 backcross progenies derived from AY×(MR-1×AY). Despite a relatively low level of polymorphism in the species, AFLP markers were found to be more efficient in mapping the melon genome than RAPD or microsatellite markers. The map contains 197 AFLPs, six RAPDs and one microsatellite marker assigned to 14 major and six minor linkage groups, and covers 1942 cM with the average distance between adjacent markers of approximately 10 cM. The maximum distance allowed between markers is 27.5 cM. About 11% of the intervals (20 out of 173) are over 20 cM (but less than 27.5 cM). The map has immediate utility for identifying markers linked to disease resistance genes that are suitable for marker-assisted breeding. The use of microsatellite markers for integration with other maps is also discussed. Received: 12 March 1997 / Accepted: 20 May 1997  相似文献   

16.
An integrated molecular marker map of the chickpea genome was established using 130 recombinant inbred lines from a wide cross between a cultivar resistant to fusarium wilt caused by Fusarium oxysporum Schlecht. emend. Snyd. &. Hans f. sp. ciceri (Padwick) Snyd & Hans, and an accession of Cicer reticulatum (PI 489777), the wild progenitor of chickpea. A total of 354 markers were mapped on the RILs including 118 STMSs, 96 DAFs, 70 AFLPs, 37 ISSRs, 17 RAPDs, eight isozymes, three cDNAs, two SCARs and three loci that confer resistance against different races of fusarium wilt. At a LOD-score of 4.0, 303 markers cover 2077.9 cM in eight large and eight small linkage groups at an average distance of 6.8 cM between markers. Fifty one markers (14.4%) were unlinked. A clustering of markers in central regions of linkage groups was observed. Markers of the same class, except for ISSR and RAPD markers, tended to generate subclusters. Also, genes for resistance to races 4 and 5 of fusarium wilt map to the same linkage group that includes an STMS and a SCAR marker previously shown to be linked to fusarium wilt race 1, indicating a clustering of several fusarium-wilt resistance genes around this locus. Significant deviation from the expected 1 : 1 segregation ratio was observed for 136 markers (38.4%, P<0.05). Segregation was biased towards the wild progenitor in 68% of the cases. Segregation distortion was similar for all marker types except for ISSRs that showed only 28.5% aberrant segregation. The map is the most extended genetic map of chickpea currently available. It may serve as a basis for marker-assisted selection and map-based cloning of fusarium wilt resistance genes and other agronomically important genes in future. Received: 17 November 1999 / Accepted: 4 June 2000  相似文献   

17.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

18.
Development and characterization of microsatellite markers in Cucumis   总被引:21,自引:0,他引:21  
This study provides a set of useful SSR markers and describes their development, characterization and application for diversity studies.Sixty one Cucumis SSR markers were developed, most of them (46) from melon (Cucumis melo L.) genomic libraries. Forty of the markers (30 melon and 10 cucumber SSRs) were evaluated for length polymorphism in a sample of 13 melon genotypes and 11 cucumber (Cucumis sativus L.) genotypes. PCR-amplification revealed up to six size alleles among the melon genotypes and up to five alleles among the cucumber genotypes, with mean gene-diversity values of 0.52 and 0.28 for melon and cucumber, respectively. These differences are in accordance with the known narrower genetic background of the cucumber. SSR data were applied to phylogenetic analysis among the melon and cucumber genotypes. A clear distinction between the ’exotic’ groups and the sweet cultivated groups was demonstrated in melon. In cucumber, separation between the two sub-species, C.sativus var. sativus and C.sativus var. hardwickii,was obtained. Conservation of SSR loci between melon and cucumber was proven by sequence comparisons. Received: 17 April 2000 / Accepted: 16 May 2000  相似文献   

19.
The potential of the biological control fungus Penicillium oxalicum to suppress wilt caused by Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. niveum on melon and watermelon, respectively, was tested under different growth conditions. The area under disease progress curve of F. oxysporum f. sp. melonis infected melon plants was significantly reduced in growth chamber and field experiments. In glasshouse experiments, it was necessary to apply P. oxalicum and dazomet in order to reduce Fusarium wilt severity in melons caused by F. oxysporum f. sp. melonis. For watermelons, we found that P. oxalicum alone reduced the area under the disease progress curve by 58% in the growth chamber experiments and 54% in the glasshouse experiments. From these results, we suggested that P. oxalicum may be effective for the management of Fusarium wilt in melon and watermelon plants.  相似文献   

20.
Knowledge of the inheritance of disease resistance and genomic regions housing resistance (R) genes is essential to prevent expanding pathogen threats such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] in cotton (Gossypium spp.). We conducted a comprehensive study combining conventional inheritance, genetic and quantitative trait loci (QTL) mapping, QTL marker-sequence composition, and genome sequencing to examine the distribution, structure and organization of disease R genes to race 1 of FOV in the cotton genome. Molecular markers were applied to F2 and recombinant inbred line (RIL) interspecific mapping populations from the crosses Pima-S7 (G. barbadense L.) × ‘Acala NemX’ (G. hirsutum L.) and Upland TM-1 (G. hirsutum) × Pima 3-79 (G. barbadense), respectively. Three greenhouse tests and one field test were used to obtain sequential estimates of severity index (DSI) of leaves, and vascular stem and root staining (VRS). A single resistance gene model was observed for the F2 population based on inheritance of phenotypes. However, additional inheritance analyses and QTL mapping indicated gene interactions and inheritance from nine cotton chromosomes, with major QTLs detected on five chromosomes [Fov1-C06, Fov1-C08, (Fov1-C11 1 and Fov1-C11 2) , Fov1-C16 and Fov1-C19 loci], explaining 8–31% of the DSI or VRS variation. The Fov1-C16 QTL locus identified in the F2 and in the RIL populations had a significant role in conferring FOV race 1 resistance in different cotton backgrounds. Identified molecular markers may have important potential for breeding effective FOV race 1 resistance into elite cultivars by marker-assisted selection. Reconciliation between genetic and physical mapping of gene annotations from marker-DNA and new DNA sequences of BAC clones tagged with the resistance-associated QTLs revealed defenses genes induced upon pathogen infection and gene regions rich in disease-response elements, respectively. These offer candidate gene targets for Fusarium wilt resistance response in cotton and other host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号