首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Rensch’s rule describes the pattern of sexual size dimorphism (SSD) claiming that in taxa where males are the larger sex, larger species generally exhibit higher male to female body size ratios. Agreement with Rensch’s rule is manifested by the slope of the allometric relationship between male and female body size exceeding one. In this paper we have tested the hypothesis that recent rapid evolutionary changes of body size accompanying domestication process and morphological radiation of domestic breeds follow Rensch’s rule. We have analyzed literature data on adult body size of males and females in domestic cows, yaks, buffaloes and other bovines (315, 12, 24 and 2 breeds, respectively) and compared it with SSD in 18 wild species/subspecies of the subfamily Bovinae. Male to female body mass ratio in domestic cows (1.48) was fairly comparable to that found in other species of domestic and wild bovines except domestic buffaloes (1.19). In cows we have demonstrated clear positive allometry of male to female body mass ratio (slope 1.21) predicted by Rensch’s rule, however, no such clear relationship was found when body mass was replaced by shoulder height. These findings are in agreement with those we have previously reported in other livestock species, goats and sheep.  相似文献   

2.
Rensch's rule refers to a pattern in sexual size dimorphism (SSD) in which SSD decreases with body size when females are the larger sex and increases with body size when males are the larger sex. Many animal taxa conform to Rensch's rule, but it has yet to be investigated in plants. Using herbarium collections from New Zealand, we characterized the size of leaves and stems of 297 individuals from 38 dioecious plant species belonging to three distantly related phylogenetic lineages. Statistical comparisons of leaf sizes between males and females showed evidence for Rensch's rule in two of the three lineages, indicating SSD decreases with leaf size when females produce larger leaves and increases with leaf size when males produce larger leaves. A similar pattern in SSD was observed for stem sizes. However, in this instance, females of small-stemmed species produced much larger stems than did males, but as stem sizes increased, SSD often disappeared. We hypothesize that sexual dimorphism in stem sizes results from selection for larger stems in females, which must provide mechanical support for seeds, fruits, and dispersal vectors, and that scaling relationships in leaf sizes result from correlated evolution with stem sizes. The overall results suggest that selection for larger female stem sizes to support the weight of offspring can give rise to Rensch's rule in dioecious plants.  相似文献   

3.
Within any given clade, male size and female size typically covary, but male size often varies more than female size. This generates a pattern of allometry for sexual size dimorphism (SSD) known as Rensch's rule. I use allometry for SSD among populations of the water strider Aquarius remigis (Hemiptera, Gerridae) to test the hypothesis that Rensch's rule evolves in response to sexual selection on male secondary sexual traits and an alternative hypothesis that it is caused by greater phenotypic plasticity of body size in males. Comparisons of three populations reared under two temperature regimes are combined with an analysis of allometry for genital and somatic components of body size among 25 field populations. Contrary to the sexual-selection hypothesis, genital length, the target of sexual selection, shows the lowest allometric slope of all the assayed traits. Instead, the results support a novel interpretation of the differential-plasticity hypothesis: that the traits most closely associated with reproductive fitness (abdomen length in females and genital length in males) are "adaptively canalized." While this hypothesis is unlikely to explain Rensch's rule among species or higher clades, it may explain widespread patterns of intraspecific variation in SSD recently documented for many insect species.  相似文献   

4.
A prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch's rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch's rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch's rule. Furthermore, we found only a weak positive relationship between SSD and SBM overall, suggesting that growth rate differences between the sexes are more important than development time differences in proximately mediating SSD in a wide but by no means comprehensive range of arthropod taxa. Except when protandry is of selective advantage (as in many butterflies, Hymenoptera, and spiders), male development time was equal to (in water striders and beetles) or even longer than (in drosophilid and sepsid flies) that of females. Because all taxa show female-biased SSD, this implies faster growth of females in general, a pattern markedly different from that of primates and birds (analyzed here for comparison). We discuss three potential explanations for this pattern based on life-history trade-offs and sexual selection.  相似文献   

5.
Sexual size dimorphism and sex ratios in dragonflies (Odonata)   总被引:1,自引:0,他引:1  
Sexual size dimorphism and biased sex ratios are common in animals. Rensch's rule states that sexual size dimorphism (SSD) would increase with body size in taxa where males are larger than females and decrease with body size in taxa where females are larger. We tested this trend in dragonflies (Odonata) by analysing body size of 21 species and found support for Rensch's rule. The increase in SSD with increasing size among species can be explained by sexual selection favouring large males. We also estimated the slope of the relationship between sex ratio and size ratio in populations of the 21 species. A negative slope would suggest that the larger sex suffers from high mortality in the larval stage, consistent with riskier foraging. The slope of this relationship was negative, but after correcting for phylogentic non-independence with independent contrasts the relationship was no longer statistically significant, perhaps because of phylogenic inertia or low sample size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 507–513.  相似文献   

6.
Rensch's rule states that sexual size dimorphism (SSD) increases with body size in taxa where males are larger, and decreases when females are larger. The dominant explanation for the trend is currently that competitive advantage for males is greater in larger individuals, whereas female size is constrained by the energetics of rearing offspring. This rule holds for a variety of vertebrate taxa, and opposing trends are rare. We examine the allometry of SSD within the Musteloidea and demonstrate a hypo‐allometry contrary to Rensch's rule, with lower SSD associated with larger body size. We provide evidence that feeding ecology is involved. Where diet promotes group‐living, the optimal strategy for the males of larger species is often not to attempt to defend access to multiple females, obviating any competitive advantage of relatively greater size. We conclude that the effect of feeding ecology on mating systems may be a hitherto neglected factor explaining variation in SSD.  相似文献   

7.
Sexual size dimorphism (SSD) is a widespread phenomenon in different animal taxa, including the subfamily of goats and sheep (Caprinae), which belongs to the most dimorphic mammalian groups. Rensch's rule describes the pattern of SSD, claiming that larger species generally exhibits higher male to female body size ratio. Agreement with Rensch's rule is manifested by slope of the allometric relationship between male and female body size exceeding one. To test this rule, we analysed the data available in the literature on adult body mass of males and females in domestic goat and sheep breeds (169 and 303, respectively) and 37 wild species/subspecies of the subfamily Caprinae. According to the current phylogenetical hypotheses, there are six distinct monophyletic groups with different levels of SSD (expressed as M/F): (1) wild goats (1.83); (2) wild sheep (1.67); (3) non‐European chamoises, including Ovibos moschatus (1.18); (4) European chamoises (1.27); (5) Budorcas taxicolor (1.01); and (6) Pantholops hodgsonii (1.65). Domestication has led to a remarkable decline in SSD of both domestic goats (1.36) and sheep (1.41). The highest regression slope of the relationship between male and female body size is that estimated for wild goats (1.32), followed by wild sheep (1.24), non‐European chamoises (1.14), domestic sheep (1.13), and domestic goats (1.10). Nevertheless, only the last two values are statistically different from one and thus corroborate Rensch's rule. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 872–883.  相似文献   

8.
Variation in body size and sexual size dimorphism(SSD) can have important consequences for animal ecology, behavior, population dynamics and the evolution of life-history traits. Organisms are expected to be larger in colder climate(i.e., Bergmann's rule) and SSD varies with body size(i.e., Rensch's rule). However, the underlying mechanisms are still elusive. The plateau brown frog(Rana kukunoris), a medium-sized anuran species with femalebiased SSD, is endemic to the Qinghai-Tibetan Plateau(QTP). From 1797 m(Maoxiang'ping) to 3453 m(Heihe'qiao) in the eastern margin of the QTP, we surveyed 10 populations of R. kukunoris and collected phalanges and snout vent length(SVL) data for 258 adult individuals(199 males versus 59 females). Based on these data, we explored how body size and SSD varying along the altitudinal gradient and examined the corresponding effects of temperature. We found body size to be larger at higher altitude for males but not for females, with likely effects from the temperature on the variation in male body size. Sex differences in growth rates may be the main cause of the variation in SSD. Our results suggested that only males follow the Bergmann's rule and variation in SSD of R. kukunoris do not support the Rensch's rule and its inverse. Therefore, the variations of body size can be different between sexes and the applicability of both Bergmann's rule and Rensch's rule should depend on species and environment where they live.  相似文献   

9.
Rensch’s rule describes a pattern of allometry in sexual size dimorphism (SSD): when males are the larger sex (male-biased SSD), SSD increases with increasing body size, and when females are the larger sex (female-biased SSD), SSD decreases with increasing body size. While this expectation generally holds for taxa with male-biased or mixed SSD, examples of allometry for SSD consistent with Rensch’s rule in groups with primarily female-biased SSD are remarkably rare. Here, I show that the majority of dwarf chameleons (Bradypodion spp.) have female-biased SSD. In accordance with Rensch’s rule, the group exhibits an allometric slope of log(female size) on log(male size) less than one, although statistical significance is dependent on the phylogenetic comparative method used. In this system, this pattern is likely due to natural selection on both male and female body size, combined with fecundity selection on female body size. In addition to quantifying SSD and testing Rensch’s rule in dwarf chameleons, I discuss reasons why Rensch’s rule may only rarely apply to taxa with female-biased SSD.  相似文献   

10.
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male : female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as 'Rensch's rule' . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales.  相似文献   

11.
Sexual size dimorphism (SSD) is widespread within the animal kingdom. Rensch’s rule describes a relationship between SSD and body size: SSD increases with body size when males are the larger sex, and decreases with body size when females are the larger sex. Rensch’s rule is well supported for taxa that exhibit male-biased SSD but patterns of allometry among taxa with female-biased size dimorphism are mixed, there is evidence both for and against the rule. Furthermore, most studies have investigated Rensch’s rule across a variety of taxa; but among-population studies supporting Rensch’s rule are lacking, especially in taxa that display only slight SSD. Here, we tested whether patterns of intraspecific variation in SSD in greater horseshoe bats conform to Rensch’s rule, and evaluated the contribution of latitude to Rensch’s rule. Our results showed SSD was consistently female-biased in greater horseshoe bats, although female body size was only slightly larger than male body size. The slope of major axis regression of log10 (male) on log10 (female) was significantly different from 1. Forearm length for both sexes of greater horseshoe bats was significantly negatively correlated with latitude, and males displayed a slightly but nonsignificant steeper latitudinal cline in body size than females. We suggest that variation in patterns of SSD among greater horseshoe bat populations is consistent with Rensch’s rule indicating that males were the more variable sex. Males did not have a steeper body size–latitude relationship than females suggesting that sex-specific latitudinal variation in body size may not be an important contributing factor to Rensch’s rule. Future research on greater horseshoe bats might best focus on more comprehensive mechanisms driving the pattern of female-biased SSD variation.  相似文献   

12.
Rensch's rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry, life-history theory, and energetics. The key features are that female group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding, death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pinnipeds (seals and sea lions), do or do not conform to Rensh's rule.  相似文献   

13.
In 1950, Rensch first described that in groups of related species, sexual size dimorphism is more pronounced in larger species. This widespread and fundamental allometric relationship is now commonly referred to as 'Rensch's rule'. However, despite numerous recent studies, we still do not have a general explanation for this allometry. Here we report that patterns of allometry in over 5300 bird species demonstrate that Rensch's rule is driven by a correlated evolutionary change in females to directional sexual selection on males. First, in detailed multivariate analysis, the strength of sexual selection was, by far, the strongest predictor of allometry. This was found to be the case even after controlling for numerous potential confounding factors, such as overall size, degree of ornamentation, phylogenetic history and the range and degree of size dimorphism. Second, in groups where sexual selection is stronger in females, allometry consistently goes in the opposite direction to Rensch's rule. Taken together, these results provide the first clear solution to the long-standing evolutionary problem of allometry for sexual size dimorphism: sexual selection causes size dimorphism to correlate with species size.  相似文献   

14.
《Genomics》2022,114(6):110515
Piao chicken, a Chinese indigenous rumpless chicken breed, lacks pygostyle, caudal vertebra, uropygial gland and tail feathers. The rumplessness in Piao chicken presents an autosomal dominant inheritance pattern. However, the molecular genetic mechanisms underlying the rumplessness in Piao chicken remains unclear. In this study, whole-genome resequencing was performed for 146 individuals from 10 chicken breeds, including 9 tailed chicken breeds and Piao rumpless breed. Tailbone CT scan for Piao chickens and WL chickens, revealed that some Piao chicken tails were normal in number, and for a few Piao chickens tail length and tail bone numbers were between the rumpless and the normal tailed chickens. The results showed that the rumpless phenotype has not been completely fixed in Piao chicken breed. Using selection signature analysis and structural variation detection, we found a 4174 bp deletion located in the upstream region of IRX1 gene on chromosome 2 related to rumpless phenotype. Structural variation genotyping showed that the deletion was present in all 32 rumpless Piao chickens (del/del, wild/del) and absent from all 112 tailed chickens included in the dataset for the other 9 breeds and 2 tailed Piao chickens (wild/wild). In summary, all rumpless Piao chickens tested here carry this deletion mutation, to show a complete linkage association with rumplessness trait. We suggested that the 4174 bp deletion could be causative for rumpless phenotype in Piao chicken since this is the only mutation to show the complete linkage disequilibrium with rumplessness on whole genome level across all of 146 chickens from the 10 breeds. This study could facilitate a better understanding of the genetic characteristics of Piao chicken.  相似文献   

15.
Current knowledge on chicken domestication is reviewed on the basis of archaeological, historical and molecular data. Several domestication centres have been identified in South and South-East Asia. Gallus?gallus is the major ancestor species, but Gallus?sonneratii has also contributed to the genetic make-up of the domestic chicken. Genetic diversity is now distributed among traditional populations, standardized breeds and highly selected lines. Knowing the genome sequence has accelerated the identification of causal mutations determining major morphological differences between wild Gallus and domestic breeds. Comparative genome resequencing between Gallus and domestic chickens has identified 21 selective sweeps, one involving a non-synonymous mutation in the TSHR gene, which functional consequences remain to be explored. The resequencing approach could also identify candidate genes responsible of quantitative traits loci (QTL) effects in selected lines. Genomics is opening new ways to understand major switches that took place during domestication and subsequent selection.  相似文献   

16.
Published results were reassessed and original data are provided regarding the origin and relatedness of four postulated chicken breed lineages, egg-type, game, meat-type and Bantam, to each other and to the basic ancestral species of jungle fowls, Gallus gallus. A system approach was employed concerning the planning of the experiments. One element of the system approach is the choice of the breeds to be compared with G. gallus. These breeds were supposed to represent major evolutionary branches of chickens. Four experiments on genetic relationships were conducted using different estimation criteria including morphological discrete characters, body measurements, biochemical markers, and the activity of serum esterase-1. The greatest similarity was found between G. gallus and the egg-type breeds of Mediterranean roots and/or true Bantams. This fact might testify that the indicated chicken groups occupied earlier stages in the evolution from the wild progenitor to the present biodiversity of chickens in the world.  相似文献   

17.
18.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号