首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

2.
U12 snRNA is required for branch point recognition in the U12-dependent spliceosome. Using site-specific cross-linking, we have captured an unexpected interaction between the 5' end of the U12 snRNA and the -2 position upstream of the 5' splice site of P120 and SCN4a splicing substrates. The U12 snRNA nucleotides that contact the 5' exon are the same ones that form the catalytically important helix Ib with U6atac snRNA in the spliceosome catalytic core. However, the U12/5' exon interaction is transient, occurring prior to the entry of the U4atac/U6atac.U5 tri-snRNP to the spliceosome. This suggests that the helix Ib region of U12 snRNA is positioned near the 5' splice site early during spliceosome assembly and only later interacts with U6atac to form helix Ib. We also provide evidence that U12 snRNA can simultaneously interact with 5' exon sequences near 5' splice site and the branch point sequence, suggesting that the 5' splice site and branch point sequences are separated by <40 to 50 A in the complex A of the U12-dependent spliceosome. Thus, no major rearrangements are subsequently needed to position these sites for the first step of catalysis.  相似文献   

3.
In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.  相似文献   

4.
Base substitutions in U2/U6 helix I, a conserved base-pairing interaction between the U6 and U2 snRNAs, have previously been found to specifically block the second catalytic step of nuclear pre-mRNA splicing. To further assess the role of U2/U6 helix I in the second catalytic step, we have screened mutations in U2/U6 helix I to identify those that influence 3' splice site selection using a derivative of the yeast actin pre-mRNA. In these derivatives, the spacing between the branch site adenosine and 3' splice site has been reduced from 43 to 12 nt and this results in enhanced splicing of mutants in the conserved 3' terminal intron residue. In this context, mutation of the conserved 3' intron terminal G to a C also results in the partial activation of a nearby cryptic 3' splice site with U as the 3' terminal intron nucleotide. Using this highly sensitive mutant substrate, we have identified a mutation in the U6 snRNA (U57A) that significantly increases the selection of the cryptic 3' splice site over the normal 3' splice site and augments its utilization relative to that observed with the wild-type U2 or U6 snRNAs. In a previous study, we found that the same U6 mutation suppressed the effects of an A-to-G branch site mutation in an allele-specific fashion. The ability of U6-U57 mutants to influence the fidelity of both branch site and 3' splice site recognition suggests that this nucleotide may participate in the formation of the active site(s) of the spliceosome.  相似文献   

5.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

6.
B Sraphin  L Kretzner    M Rosbash 《The EMBO journal》1988,7(8):2533-2538
We analyzed the effects of suppressor mutations in the U1 snRNA (SNR19) gene from Saccharomyces cerevisiae on the splicing of mutant pre-mRNA substrates. The results indicate that pairing between U1 snRNA and the highly conserved position 5 (GTATGT) of the intron occurs early in spliceosome assembly in vitro. This pairing is important for efficient splicing both in vitro and in vivo. However, pairing at position 5 does not appear to influence 5' splice site selection in vivo, indicating that the previously described U1 snRNA:5' splice junction base pairing interaction is not sufficient to define the 5' cleavage site.  相似文献   

7.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

8.
Important general insights into the mechanism of pre-mRNA splicing have emerged from studies of the U12-dependent spliceosome. Here, photochemical cross-linking analyses during U12-dependent spliceosome assembly have surprisingly revealed that an upstream 5' exon region is required for establishing two essential catalytic core interactions, U12/U6atac helix Ib and U6atac/5' splice site contacts, but not for U5/5' exon interactions or partial unwinding of U4atac/U6atac. A novel intermediate, representing an alternative pathway for catalytic core formation, is a ternary snRNA complex containing U4atac/U6atac stem II and U12/U6atac helix Ia that forms even without U6atac replacing U11 at the 5' splice site. A powerful oligonucleotide displacement method suggests that the blocked complexes analyzed to deduce the interdependence of these multiple RNA exchanges are authentic intermediates in U12-dependent spliceosome assembly.  相似文献   

9.
Mutations in yeast U5 snRNA alter the specificity of 5' splice-site cleavage   总被引:47,自引:0,他引:47  
A Newman  C Norman 《Cell》1991,65(1):115-123
Recognition of 5' splice sites in pre-mRNA splicing is achieved in part by base pairing with U1 snRNA. We have used interactive suppression in the yeast Saccharomyces cerevisiae to look for other factors involved in 5' splice-site recognition. This approach identified an extragenic suppressor that activates a cryptic 5' splice site. The suppressor is a gene for U5 snRNA (snR7) with a single base mutation in a strictly conserved 9 base sequence. This suggests that U5 snRNA can play a part in determining the position of 5' splice-site cleavage. Consistent with this, we have been able to isolate other mutations in the 9 base element in U5 snRNA that specifically activate a second cryptic 5' splice site nearby.  相似文献   

10.
Splice site recognition and catalysis of the transesterification reactions in the spliceosome are accompanied by a dynamic series of interactions involving conserved or invariant sequences in the spliceosomal snRNAs. We have used site-specific photoactivated crosslinking in yeast spliceosomes to monitor interactions between snRNAs and exon sequences near the 5' and 3' splice sites. The last nucleotide of the 5' exon can be crosslinked to an invariant loop sequence in U5 SnRNA before and after 5' splice site cleavage. The first nucleotide of the 3' exon can also be crosslinked to the same U5 loop sequence, but this contact is only detectable after the first transesterification. These results are in close agreement with earlier data from mammalian splicing extracts, and they are consistent with a model in which U5 snRNA aligns the 5' and 3' exons for the second transesterification. After the first catalytic step of splicing, the first nucleotide of the 3' exon can also crosslink to nt U23 in U2 snRNA. This is one of a cluster of residues in U2-U6 helix I implicated by mutational analysis in the second catalytic step of splicing. The crosslinking data suggest that these residues in U2-U6 helix I are in close proximity to the scissile phosphodiester bond at the 3' splice site prior to the second transesterification. These results constitute the first biochemical evidence for a direct interaction between the 3' splice site and U2 snRNA.  相似文献   

11.
Zahler AM  Tuttle JD  Chisholm AD 《Genetics》2004,167(4):1689-1696
Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.  相似文献   

12.
Suppressor U1 Snrnas in Drosophila   总被引:2,自引:0,他引:2       下载免费PDF全文
PCH. Lo  D. Roy    S. M. Mount 《Genetics》1994,138(2):365-378
Although the role of U1 small nuclear RNAs (snRNAs) in 5' splice site recognition is well established, suppressor U1 snRNAs active in intact multicellular animals have been lacking. Here we describe suppression of a 5' splice site mutation in the Drosophila melanogaster white gene (w(DR18)) by compensatory changes in U1 snRNA. Mutation of positions -1 and +6 of the 5' splice site of the second intron (ACG|GTGACT to ACC|GTGAGC) results in the accumulation of RNA retaining this 74-nucleotide intron in both transfected cells and transgenic flies. U1-3G, a suppressor U1 snRNA which restores basepairing at position +6 of the mutant intron, increases the ratio of spliced to unspliced w(DR18) RNA up to fivefold in transfected Schneider cells and increases eye pigmentation in w(DR18) flies. U1-9G, which targets position -1, suppresses w(DR18) in transfected cells less well. U1-3G,9G has the same effect as U1-3G although it accumulates to lower levels. Suppression of w(DR18) has revealed that the U1b embryonic variant (G134 to U) is active in Schneider cells and pupal eye discs. However, the combination of 9G with 134U leads to reduced accumulation of both U1b-9G and U1b-3G,9G, possibly because nucleotides 9 and 134 both participate in a potential long-range intramolecular base-pairing interaction. High levels of functional U1-3G suppressor reduce both viability and fertility in transformed flies. These results show that, despite the difficulties inherent in stably altering splice site selection in multicellular organisms, it is possible to obtain suppressor U1 snRNAs in flies.  相似文献   

13.
During pre-mRNA splicing, the spliceosome must configure the substrate, catalyze 5′ splice site cleavage, reposition the substrate, and catalyze exon ligation. The highly conserved U2/U6 helix I, which adjoins sequences that define the reactive sites, has been proposed to configure the substrate for 5′ splice site cleavage and promote catalysis. However, a role for this helix at either catalytic step has not been tested rigorously and previous observations question its role at the catalytic steps. Through a comprehensive molecular genetic study of U2/U6 helix I, we found that weakening U2/U6 helix I, but not mutually exclusive structures, compromised splicing of a substrate limited at the catalytic step of 5′ splice site cleavage, providing the first compelling evidence that this helix indeed configures the substrate during 5′ splice site cleavage. Further, mutations that we proved weaken only U2/U6 helix I suppressed a mutation in PRP16, a DEAH-box ATPase required after 5′ splice site cleavage, providing persuasive evidence that helix I is destabilized by Prp16p and suggesting that this structure is unwound between the catalytic steps. Lastly, weakening U2/U6 helix I also compromised splicing of a substrate limited at the catalytic step of exon ligation, providing evidence that U2/U6 helix I reforms and functions during exon ligation. Thus, our data provide evidence for a fundamental and apparently dynamic role for U2/U6 helix I during the catalytic stages of splicing.  相似文献   

14.
15.
Multiple functions for the invariant AGC triad of U6 snRNA   总被引:3,自引:3,他引:0       下载免费PDF全文
The invariant AGC triad of U6 snRNA plays an essential, unknown role in splicing. The triad has been implicated in base-pairing with residues in U2, U4, and U6. Through a genetic analysis in S. cerevisiae, we found that most AGC mutants are suppressed both by restoring pairing with U2, supporting the significance of U2/U6 helix Ib, and by destabilizing U2 stem I, indicating that this stem regulates helix Ib formation. Intriguingly, one of the helix Ib base pairs is required specifically for exon ligation, raising the possibility that the entirety of helix Ib is required only for exon ligation. We also found that U4 mutations that reduce complementarity in U4 stem I enhance U2-mediated suppression of an AGC mutant, suggesting that U4 stem I competes with the AGC-containing U4/U6 stem I. Implicating an additional, essential function for the triad, three triad mutants are refractory to suppression--even by simultaneous restoration of pairing with U2, U4, and U6. An absolute requirement for a purine at the central position of the triad parallels an equivalent requirement in a catalytically important AGC triad in group II introns, consistent with a role for the AGC triad of U6 in catalysis.  相似文献   

16.
C I Reich  R W VanHoy  G L Porter  J A Wise 《Cell》1992,69(7):1159-1169
U1 snRNA is an essential splicing factor known to base pair with 5' splice sites of premessenger RNAs. We demonstrate that pairing between the universally conserved CU just downstream from the 5' junction interaction region and the 3' splice site AG contributes to efficient splicing of Schizosaccharomyces pombe introns that typify the AG-dependent class described in mammals. Strains carrying mutations in the 3' AG of an artificial intron accumulate linear precursor, indicative of a first step block. Lariat formation is partially restored in these mutants by compensatory changes in nucleotides C7 and U8 of U1 snRNA. Consistent with a general role in fission yeast splicing, mutations at C7 are lethal, while U8 mutants are growth impaired and accumulate linear, unspliced precursor to U6 snRNA. U1 RNA-mediated recognition of the 3' splice site may have origins in analogous intramolecular interactions in an ancestral self-splicing RNA.  相似文献   

17.
Combinations of different mutations within the 5' splice region of the rabbit beta-globin large intron were analyzed for their effect on in vitro splicing. Based upon the complementarity of the 5' splice region to the 5' terminal region of the U1 snRNA, the exact location of the 5' cleavage site of different mutants could be predicted and was experimentally confirmed. These findings add further strong support to the hypothesis (1) that the exact location of the 5' cleavage site in pre-mRNA splicing of higher eukaryotes is determined by the overall 5' splice region via the complementarity to the 5' end of the U1 snRNA, and not by the strongly conserved GU dinucleotide.  相似文献   

18.
Highly conserved G runs, G1M2 and ISE, regulate the proteolipid protein (PLP)/DM20 ratio. We have investigated recruitment of U1 small nuclear ribonuclear protein (snRNP) by G1M2 and ISE and examined the effect of splice site strength, distance, and context on G run function. G1M2 is necessary for initial recruitment of U1snRNP to the DM20 5' splice site independent of the strength of the splice site. G1M2 regulates E complex formation and supports DM20 splicing when functional U1snRNP is reduced. By contrast, the ISE is not required for the initial recruitment of U1snRNP to the PLP 5' splice site. However, in close proximity to either the DM20 or the PLP 5' splice site, the ISE recruits U1snRNP to both splice sites. The ISE enhances DM20 splicing, whereas close to the PLP 5' splice site, it inhibits PLP splicing. Splicing enhancement and inhibition are mediated by heterogeneous nuclear ribonuclear protein (hnRNP)H/F. The data show that recognition of the DM20 5' splice site depends on G run-mediated recruitment of U1snRNA, whereas a complex interaction between the ISE G runs, context and position determines the functional outcome on splicing. The data suggest that different mechanisms underlie G run-mediated recognition of 5' splice sites and that context and position play a critical role.  相似文献   

19.
Pre-mRNA splicing in metazoans is mainly specified by sequences at the termini of introns. We have selected functional 5' splice sites from randomized intron sequences through repetitive rounds of in vitro splicing in HeLa cell nuclear extract. The consensus sequence obtained after one round of selection in normal extract closely resembled the consensus of natural occurring 5' splice sites, suggesting that the selection pressures in vitro and in vivo are similar. After three rounds of selection under competitive splicing conditions, the base pairing potential to the U1 snRNA increased, yielding a G100%U100%R94%A67%G89%U76%R83% intronic consensus sequence. Surprisingly, a nearly identical consensus sequence was obtained when the selection was performed in nuclear extract containing U1 snRNA with a deleted 5' end, suggesting that other factors than the U1 snRNA are involved in 5' splice site recognition. The importance of a consecutive complementarity between the 5' splice site and the U1 snRNA was analyzed systematically in the natural range for in vitro splicing efficiency and complex formation. Extended complementarity was inhibitory to splicing at a late step in spliceosome assembly when pre-mRNA substrates were incubated in normal extract, but favorable for splicing under competitive splicing conditions or in the presence of truncated U1 snRNA where transition from complex A to complex B occurred more rapidly. This suggests that stable U1 snRNA binding is advantageous for assembly of commitment complexes, but inhibitory for the entry of the U4/U6.U5 tri-snRNP, probably due to a delayed release of the U1 snRNP.  相似文献   

20.
Activation of pre-messenger RNA (pre-mRNA) splicing requires 5′ splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5′ exon adjacent to the 5′ splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5′ exon positions using one specific sequence adjacent to U1 snRNA helix 1. This novel interaction of U1 we propose occurs before U1-5′ splice site base pairing. In contrast, U5 snRNA interactions with the 5′ exon of the pre-mRNA progressively shift towards the 5′ end of U5 loop 1 as the crosslinking group is placed further from the 5′ splice site, with only interactions closest to the 5′ splice site persisting to the 5′ exon intermediate and the second step of splicing. A novel yeast U2 snRNA interaction with the 5′ exon was also identified, which is ATP dependent and requires U2-branchpoint interaction. This study provides insight into the nature and timing of snRNA interactions required for 5′ splice site recognition prior to the first step of pre-mRNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号