首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

2.
A role for U2/U6 helix Ib in 5' splice site selection.   总被引:4,自引:4,他引:0       下载免费PDF全文
Selection of pre-mRNA splice sites is a highly accurate process involving many trans-acting factors. Recently, we described a role for U6 snRNA position G52 in selection of the first intron nucleotide (+1G). Because some U2 alleles suppress U6-G52 mutations, we investigated whether the corresponding U2 snRNA region also influenced 5' splice site selection. Our results demonstrate that U2 snRNAs mutated at position U23, but not adjacent nucleotides, specifically affect 5' splice site cleavage. Furthermore, all U2 position U23 mutations are synthetic lethal with the thermosensitive U6-G52U allele. Interestingly, the U2-U23C substitution has an unprecedented hyperaccurate splicing phenotype in which cleavage of introns with a +1G substitution is reduced, whereas the strain grows with wild-type kinetics. U2 position U23 forms the first base pair with U6 position A59 in U2/U6 helix Ib. Restoration of the helical structure suppresses 5' splice site cleavage defects, showing an important role for the helix Ib structure in 5' splice site selection. U2/U6 helix Ib and helix II have recently been described as being functionally redundant. This report demonstrates a unique role for helix Ib in 5' splice site selection that is not shared with helix II.  相似文献   

3.
C I Reich  R W VanHoy  G L Porter  J A Wise 《Cell》1992,69(7):1159-1169
U1 snRNA is an essential splicing factor known to base pair with 5' splice sites of premessenger RNAs. We demonstrate that pairing between the universally conserved CU just downstream from the 5' junction interaction region and the 3' splice site AG contributes to efficient splicing of Schizosaccharomyces pombe introns that typify the AG-dependent class described in mammals. Strains carrying mutations in the 3' AG of an artificial intron accumulate linear precursor, indicative of a first step block. Lariat formation is partially restored in these mutants by compensatory changes in nucleotides C7 and U8 of U1 snRNA. Consistent with a general role in fission yeast splicing, mutations at C7 are lethal, while U8 mutants are growth impaired and accumulate linear, unspliced precursor to U6 snRNA. U1 RNA-mediated recognition of the 3' splice site may have origins in analogous intramolecular interactions in an ancestral self-splicing RNA.  相似文献   

4.
B Sraphin  L Kretzner    M Rosbash 《The EMBO journal》1988,7(8):2533-2538
We analyzed the effects of suppressor mutations in the U1 snRNA (SNR19) gene from Saccharomyces cerevisiae on the splicing of mutant pre-mRNA substrates. The results indicate that pairing between U1 snRNA and the highly conserved position 5 (GTATGT) of the intron occurs early in spliceosome assembly in vitro. This pairing is important for efficient splicing both in vitro and in vivo. However, pairing at position 5 does not appear to influence 5' splice site selection in vivo, indicating that the previously described U1 snRNA:5' splice junction base pairing interaction is not sufficient to define the 5' cleavage site.  相似文献   

5.
Combinations of different mutations within the 5' splice region of the rabbit beta-globin large intron were analyzed for their effect on in vitro splicing. Based upon the complementarity of the 5' splice region to the 5' terminal region of the U1 snRNA, the exact location of the 5' cleavage site of different mutants could be predicted and was experimentally confirmed. These findings add further strong support to the hypothesis (1) that the exact location of the 5' cleavage site in pre-mRNA splicing of higher eukaryotes is determined by the overall 5' splice region via the complementarity to the 5' end of the U1 snRNA, and not by the strongly conserved GU dinucleotide.  相似文献   

6.
In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.  相似文献   

7.
Mutations in yeast U5 snRNA alter the specificity of 5' splice-site cleavage   总被引:47,自引:0,他引:47  
A Newman  C Norman 《Cell》1991,65(1):115-123
Recognition of 5' splice sites in pre-mRNA splicing is achieved in part by base pairing with U1 snRNA. We have used interactive suppression in the yeast Saccharomyces cerevisiae to look for other factors involved in 5' splice-site recognition. This approach identified an extragenic suppressor that activates a cryptic 5' splice site. The suppressor is a gene for U5 snRNA (snR7) with a single base mutation in a strictly conserved 9 base sequence. This suggests that U5 snRNA can play a part in determining the position of 5' splice-site cleavage. Consistent with this, we have been able to isolate other mutations in the 9 base element in U5 snRNA that specifically activate a second cryptic 5' splice site nearby.  相似文献   

8.
R K Alvi  M Lund    R T Okeefe 《RNA (New York, N.Y.)》2001,7(7):1013-1023
Pre-messenger RNA splicing is a two-step process by which introns are removed and exons joined together. In yeast, the U5 snRNA loop 1 interacts with the 5' exon before the first step of splicing and with the 5' and 3' exons before the second step. In vitro studies revealed that yeast U5 loop 1 is not required for the first step of splicing but is essential for holding the 5' and 3' exons for ligation during the second step. It is critical, therefore, that loop 1 contacts the 5' exon before the first step of splicing to hold this exon following cleavage from the pre-mRNA. At present it is not known how U5 loop 1 is positioned on the 5' exon prior to the first step of splicing. To address this question, we have used site-specific photoactivated crosslinking in yeast spliceosomes to investigate the interaction of U5 loop 1 with the pre-mRNA prior to the first step of splicing. We have found that the highly conserved uridines in loop 1 make ATP-dependent contacts with an approximately 8-nt region at the 5' splice site that includes the invariant GU. These interactions are dependent on functional U2 and U6 snRNAs. Our results support a model where U5 snRNA loop 1 interacts with the 5' exon in two steps during its targeting to the 5' splice site.  相似文献   

9.
C. F. Lesser  C. Guthrie 《Genetics》1993,133(4):851-863
We have developed a new reporter gene fusion to monitor mRNA splicing in yeast. An intron-containing fragment from the Saccharomyces cerevisiae ACT1 gene has been fused to CUP1, the yeast metallothionein homolog. CUP1 is a nonessential gene that allows cells to grow in the presence of copper in a dosage-dependent manner. By inserting previously characterized intron mutations into the fusion construct, we have established that the efficiency of splicing correlates with the level of copper resistance of these strains. A highly sensitive assay for 5' splice site usage was designed by engineering an ACT1-CUP1 construct with duplicated 5' splice sites; mutations were introduced into the upstream splice site in order to evaluate the roles of these highly conserved nucleotides in intron recognition. Almost all mutations in the intron portion of the 5' consensus sequence abolish recognition of the mutated site, while mutations in the exon portion of the consensus sequence have variable affects on cleavage at the mutated site. Interestingly, mutations at intron position 4 demonstrate that this nucleotide plays a role in 5' splice site recognition other than by base pairing with U1 snRNA. The use of CUP1 as a reporter gene may be generally applicable for monitoring cellular processes in yeast.  相似文献   

10.
The T-->G mutation at nucleotide 705 in the second intron of the beta-globin gene creates an aberrant 5' splice site and activates a 3' cryptic splice site upstream from the mutation. As a result, the IVS2-705 pre-mRNA is spliced via the aberrant splice sites leading to a deficiency of beta-globin mRNA and protein and to the genetic blood disorder thalassemia. We have shown previously that in cell culture models of thalassemia, aberrant splicing of beta-thalassemic IVS2-705 pre-mRNA was permanently corrected by a modified murine U7 snRNA that incorporated sequences antisense to the splice sites activated by the mutation. To explore the possibility of using other snRNAs as vectors for antisense sequences, U1 snRNA was modified in a similar manner. Replacement of the U1 9-nucleotide 5' splice site recognition sequence with nucleotides complementary to the aberrant 5' splice site failed to correct splicing of IVS2-705 pre-mRNA. In contrast, U1 snRNA targeted to the cryptic 3' splice site was effective. A hybrid with a modified U7 snRNA gene under the control of the U1 promoter and terminator sequences resulted in the highest levels of correction (up to 70%) in transiently and stably transfected target cells.  相似文献   

11.
Base substitutions in U2/U6 helix I, a conserved base-pairing interaction between the U6 and U2 snRNAs, have previously been found to specifically block the second catalytic step of nuclear pre-mRNA splicing. To further assess the role of U2/U6 helix I in the second catalytic step, we have screened mutations in U2/U6 helix I to identify those that influence 3' splice site selection using a derivative of the yeast actin pre-mRNA. In these derivatives, the spacing between the branch site adenosine and 3' splice site has been reduced from 43 to 12 nt and this results in enhanced splicing of mutants in the conserved 3' terminal intron residue. In this context, mutation of the conserved 3' intron terminal G to a C also results in the partial activation of a nearby cryptic 3' splice site with U as the 3' terminal intron nucleotide. Using this highly sensitive mutant substrate, we have identified a mutation in the U6 snRNA (U57A) that significantly increases the selection of the cryptic 3' splice site over the normal 3' splice site and augments its utilization relative to that observed with the wild-type U2 or U6 snRNAs. In a previous study, we found that the same U6 mutation suppressed the effects of an A-to-G branch site mutation in an allele-specific fashion. The ability of U6-U57 mutants to influence the fidelity of both branch site and 3' splice site recognition suggests that this nucleotide may participate in the formation of the active site(s) of the spliceosome.  相似文献   

12.
Splice site recognition and catalysis of the transesterification reactions in the spliceosome are accompanied by a dynamic series of interactions involving conserved or invariant sequences in the spliceosomal snRNAs. We have used site-specific photoactivated crosslinking in yeast spliceosomes to monitor interactions between snRNAs and exon sequences near the 5' and 3' splice sites. The last nucleotide of the 5' exon can be crosslinked to an invariant loop sequence in U5 SnRNA before and after 5' splice site cleavage. The first nucleotide of the 3' exon can also be crosslinked to the same U5 loop sequence, but this contact is only detectable after the first transesterification. These results are in close agreement with earlier data from mammalian splicing extracts, and they are consistent with a model in which U5 snRNA aligns the 5' and 3' exons for the second transesterification. After the first catalytic step of splicing, the first nucleotide of the 3' exon can also crosslink to nt U23 in U2 snRNA. This is one of a cluster of residues in U2-U6 helix I implicated by mutational analysis in the second catalytic step of splicing. The crosslinking data suggest that these residues in U2-U6 helix I are in close proximity to the scissile phosphodiester bond at the 3' splice site prior to the second transesterification. These results constitute the first biochemical evidence for a direct interaction between the 3' splice site and U2 snRNA.  相似文献   

13.
The YAG/ consensus sequence at the 3' end of introns (the slash indicates the location of the 3' splice site) is essential for catalysis of the second step of pre-mRNA splicing. Little is known about the interactions formed by these three nucleotides in the spliceosome. Although previous observations have suggested that the G of the YAG/ interacts with the first nucleotide of the /GUA consensus sequence at the 5' end of the intron, additional interactions have not been identified. Here we report several striking genetic interactions between A+3 of the 5' /GUA with Y-3 of the 3' YAG/ and G50 of the highly conserved ACAGAG motif in U6 snRNA. Two mutations in U6 G50 of the ACAGAG can weakly suppress two mutations in A+3 of the 5' /GUA. This suppression is significantly enhanced upon the inclusion of a specific mutation Y-3 in the 3' YAG/. RNA analysis confirmed that the severe splicing defect observed in A+3 and Y-3 double mutants can be rescued to near wild-type levels by the mutations in U6 G50. The contributions of each mutation to the genetic interaction and the strong position specificity of suppression, combined with previous findings, support a model in which the 5' /GUA and the GAG of U6 function in binding the 3' YAG/ during the second catalytic step.  相似文献   

14.
A notable feature of the newly described U12 snRNA-dependent class of eukaryotic nuclear pre-mRNA introns is the highly conserved 8-nt 5'' splice site sequence. This sequence is virtually invariant in all known members of this class from plants to mammals. Based on sequence complementarity between this sequence and the 5'' end of the U11 snRNA, we proposed that U11 snRNP may play a role in identifying and/or activating the 5'' splice site for splicing. Here we show that mutations of the conserved 5'' splice site sequence of a U12-dependent intron severely reduce correct splicing in vivo and that compensatory mutations in U11 snRNA can suppress the effects of the 5'' splice site mutations to varying extents. This provides evidence for a required interaction between U11 snRNA and the 5'' splice site sequence involving Watson-Crick base pairing. This data, in addition to a report that U11 snRNP is bound transiently to the U12-dependent spliceosome, suggests that U11 snRNP is the analogue of U1 snRNP in splicing this rare class of introns.  相似文献   

15.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism.  相似文献   

16.
Pre-mRNA splicing in metazoans is mainly specified by sequences at the termini of introns. We have selected functional 5' splice sites from randomized intron sequences through repetitive rounds of in vitro splicing in HeLa cell nuclear extract. The consensus sequence obtained after one round of selection in normal extract closely resembled the consensus of natural occurring 5' splice sites, suggesting that the selection pressures in vitro and in vivo are similar. After three rounds of selection under competitive splicing conditions, the base pairing potential to the U1 snRNA increased, yielding a G100%U100%R94%A67%G89%U76%R83% intronic consensus sequence. Surprisingly, a nearly identical consensus sequence was obtained when the selection was performed in nuclear extract containing U1 snRNA with a deleted 5' end, suggesting that other factors than the U1 snRNA are involved in 5' splice site recognition. The importance of a consecutive complementarity between the 5' splice site and the U1 snRNA was analyzed systematically in the natural range for in vitro splicing efficiency and complex formation. Extended complementarity was inhibitory to splicing at a late step in spliceosome assembly when pre-mRNA substrates were incubated in normal extract, but favorable for splicing under competitive splicing conditions or in the presence of truncated U1 snRNA where transition from complex A to complex B occurred more rapidly. This suggests that stable U1 snRNA binding is advantageous for assembly of commitment complexes, but inhibitory for the entry of the U4/U6.U5 tri-snRNP, probably due to a delayed release of the U1 snRNP.  相似文献   

17.
Intron sequences involved in lariat formation during pre-mRNA splicing   总被引:114,自引:0,他引:114  
R Reed  T Maniatis 《Cell》1985,41(1):95-105
We have shown that lariat formation during in vitro splicing of several RNA precursors, from Drosophila to man, occurs at a unique and identifiable but weakly conserved site, 18 to 37 nucleotides proximal to the 3' splice site. Lariat formation within an artificial intron lacking a normal branch-point sequence occurs at a cryptic site a conserved distance (approximately 23 nucleotides) from the 3' splice site. Analysis of beta-thalassemia splicing mutations revealed that lariat formation in the first intron of the human beta-globin gene occurs at the same site in normal and mutant precursors, even though alternate 5' and 3' splice sites are utilized in the mutants. Remarkably, cleavage at the 5' splice site and lariat formation do not occur when the precursor contains a beta-thalassemia deletion removing the polypyrimidine stretch and AG dinucleotide at the 3' splice site. In contrast, a single base substitution in the AG dinucleotide blocks cleavage at the 3' splice site but not at the 5' site.  相似文献   

18.
J C Rain  P Legrain 《The EMBO journal》1997,16(7):1759-1771
Pre-mRNA splicing is a stepwise nuclear process involving intron recognition and the assembly of the spliceosome followed by intron excision. We previously developed a pre-mRNA export assay that allows the discrimination between early steps of spliceosome formation and splicing per se. Here we present evidence that these two assays detect different biochemical defects for point mutations. Mutations at the 5' splice site lead to pre-mRNA export, whereas 3' splice site mutations do not. A genetic screen applied to mutants in the branch site region shows that all positions in the conserved TACTAAC sequence are important for intron recognition. An exhaustive analysis of pre-mRNA export and splicing defects of these mutants shows that the in vivo recognition of the branch site region does not involve the base pairing of U2 snRNA with the pre-mRNA. In addition, the nucleotide preceding the conserved TACTAAC sequence contributes to the recognition process. We show that a T residue at this position allows for optimal intron recognition and that in natural introns, this nucleotide is also used preferentially. Moreover, the Mud2 protein is involved in the recognition of this nucleotide, thus establishing a role for this factor in the in vivo splicing pathway.  相似文献   

19.
A Deirdre  J Scadden    C W Smith 《The EMBO journal》1995,14(13):3236-3246
Nuclear pre-mRNA splicing has a fundamentally similar two-step mechanism to that employed by group II self-splicing introns. It is believed that nuclear pre-mRNA splicing involves a network of RNA-RNA interactions which form the catalytic core of the active spliceosome. We show here a non-Watson-Crick interaction between the first and last guanosine residues of a mammalian intron. As in Saccharomyces cerevisiae, substitution of the conserved guanosines at the 5' and 3' splice sites by A and C respectively, specifically suppresses step 2 splicing defects resulting from the individual mutations. No other combination of terminal nucleotides was able to restore splicing. We additionally provide independent evidence for an indirect interaction between other nucleotides of the consensus splice sites during step 2 of splicing. Substitution of the nucleotide in the +3 position of the 5' splice site affects competition between closely spaced AG dinucleotides at the 3' splice site, although the interaction is not via direct differential base pairing. Finally, we show that complete substitution of guanosine residues by inosine in a pre-mRNA has only a modest effect upon step 2 of splicing, although earlier spliceosome assembly steps are impaired. Predictions can thus be made about the precise configuration of the non-Watson-Crick interaction between the terminal residues.  相似文献   

20.
M Aebi  H Hornig  C Weissmann 《Cell》1987,50(2):237-246
We have generated all possible single point mutations of the invariant 5' GT of the large beta-globin intron and determined their effect on splicing in vitro. None of the mutants prevented cleavage in the 5' splice region, but many reduced or abolished exon joining. The mutations GT----TT and GT----CT resulted in a shift of the 5' cleavage site on nucleotide upstream; in the case of the mutation GT----TT, this shift was reverted by a second site mutation within the 5' splice region. Our results suggest that the 5' cleavage site is determined not by the conserved GU sequence but by the 5' splice region as a whole, most probably via base-pairing to the 5' end of the U1 snRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号