首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chang JY  Lu BY  Lin CC  Yu C 《FEBS letters》2006,580(2):656-660
Scrambled isomers (X-isomers) are fully oxidized, non-native isomers of disulfide proteins. They have been shown to represent important intermediates along the pathway of oxidative folding of numerous disulfide proteins. A simple method to assess whether X-isomers present as folding intermediate is to conduct oxidative folding of fully reduced protein in the alkaline buffer alone without any supplementing thiol catalyst or redox agent. Cardiotoxin-III (CTX-III) contains 60 amino acids and four disulfide bonds. The mechanism of oxidative folding of CTX-III has been systematically characterized here by analysis of the acid trapped folding intermediates. Folding of CTX-III was shown to proceed sequentially through 1-disulfide, 2-disulfide, 3-disulfide and 4-disulfide (scrambled) isomers as folding intermediates to reach the native structure. When folding of CTX-III was performed in the buffer alone, more than 97% of the protein was trapped as 4-disulfide X-isomers, unable to convert to the native structure due to the absence of thiol catalyst. In the presence of thiol catalyst (GSH) or redox agents (GSH/GSSG), the recovery of native CTX-III was 80-85%. These results demonstrate that X-isomers play an essential and predominant role in the oxidative folding of CTX-III.  相似文献   

2.
Chang JY  Li L 《Biochemistry》2002,41(26):8405-8413
The pathway of oxidative folding of alpha-lactalbumin (alpha LA) (four disulfide bonds) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. In the absence of calcium, oxidative folding of alpha LA proceeds through highly heterogeneous species of one-, two-, three-, and four-disulfide (scrambled) intermediates to reach the native structure. In the presence of calcium, the folding intermediates of alpha LA comprise two predominant isomers (alpha LA-IIA and alpha LA-IIIA) adopting exclusively native disulfide bonds, including the two disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) located within the beta-sheet calcium binding domain. alpha LA-IIA is a two-disulfide species consisting of Cys(61)-Cys(77) and Cys(73)-Cys(91) disulfide bonds. alpha LA-IIIA contains Cys(61)-Cys(77), Cys(73)-Cys(91), and Cys(28)-Cys(111) disulfide bonds. The underlying mechanism of the contrasting folding pathways of calcium-bound and calcium-depleted alpha LA is congruent with the cause of diversity of disulfide folding pathways observed among many well-characterized three-disulfide proteins, including bovine pancreatic trypsin inhibitor and hirudin. Our study also reveals novel aspects of the folding mechanism of alpha LA that have not been described previously.  相似文献   

3.
The disulfide folding pathway of bovine pancreatic trypsin inhibitor (BPTI) is characterized by the predominance of folding intermediates with native-like structures. Our laboratory has recently analyzed the folding pathway(s) of four 3-disulfide-containing proteins, including hirudin, potato carboxypeptidase inhibitor, epidermal growth factor, and tick anticoagulant peptide. Their folding mechanism(s) differ from that of BPTI by 1) a higher degree of heterogeneity of 1- and 2-disulfide intermediates and 2) the presence of 3-disulfide scrambled isomers as folding intermediates. To search for the underlying causes of these diversities, we conducted kinetic analyses of the reductive unfolding of these five proteins. The experiment of reductive unfolding was designed to evaluate the relative stability and interdependence of disulfide bonds in the native protein. It is demonstrated here that among these five proteins, there exists a striking correlation between the mechanism(s) of reductive unfolding and that of oxidative folding. Those proteins with their native disulfide bonds reduced in a collective and simultaneous manner exhibit both a high degree of heterogeneity of folding intermediates and the accumulation of scrambled isomers along the folding pathway. A sequential reduction of the native disulfide bonds is associated with the presence of predominant intermediates with native- like structures.  相似文献   

4.
The oxidative folding and reductive unfolding pathways of leech carboxypeptidase inhibitor (LCI; four disulfides) have been characterized in this work by structural and kinetic analysis of the acid-trapped folding intermediates. The oxidative folding of reduced and denatured LCI proceeds rapidly through a sequential flow of 1-, 2-, 3-, and 4-disulfide (scrambled) species to reach the native form. Folding intermediates of LCI comprise two predominant 3-disulfide species (designated as III-A and III-B) and a heterogeneous population of scrambled isomers that consecutively accumulate along the folding reaction. Our study reveals that forms III-A and III-B exclusively contain native disulfide bonds and correspond to stable and partially structured species that interconvert, reaching an equilibrium prior to the formation of the scrambled isomers. Given that these intermediates act as kinetic traps during the oxidative folding, their accumulation is prevented when they are destabilized, thus leading to a significant acceleration of the folding kinetics. III-A and III-B forms appear to have both native disulfides bonds and free thiols similarly protected from the solvent; major structural rearrangements through the formation of scrambled isomers are required to render native LCI. The reductive unfolding pathway of LCI undergoes an apparent all-or-none mechanism, although low amounts of intermediates III-A and III-B can be detected, suggesting differences in protection against reduction among the disulfide bonds. The characterization of III-A and III-B forms shows that the former intermediate structurally and functionally resembles native LCI, whereas the III-B form bears more resemblance to scrambled isomers.  相似文献   

5.
Chang JY 《Biochemistry》2004,43(15):4522-4529
The pathways of oxidative folding of disulfide proteins exhibit a high degree of diversity, which is illustrated by the varied extent of (a) the heterogeneity of folding intermediates, (b) the predominance of intermediates containing native disulfide bonds, and (c) the level of accumulation of fully oxidized scrambled isomers as intermediates. BPTI and hirudin exemplify two extreme cases of such divergent folding pathways. We previously proposed that the underlying cause of this diversity is associated with the degree of stability of protein subdomains. Here we present compelling evidence that substantiates this hypothesis by studying the folding pathway of alphaLA-IIA. alphaLA-IIA is a partially folded intermediate of alpha-lactalbumin (alphaLA). It comprises a structured beta-sheet (calcium-binding) domain linked by two native disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) and a disordered alpha-helical domain with four free cysteines (Cys(6), Cys(28), Cys(111), and Cys(120)). Purified alphaLA-IIA was allowed to refold without and with stabilization of its structured beta-sheet domain by calcium. In the absence of calcium, the folding pathway of alphaLA-IIA resembles that of hirudin, displaying a highly heterogeneous population of folding intermediates, including fully oxidized scrambled species. Upon stabilization of its beta-sheet domain by bound calcium, oxidative folding of alphaLA-IIA undergoes a pathway conspicuously similar to that of BPTI, exhibiting limited species of folding intermediates containing mostly native disulfide bonds.  相似文献   

6.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient Ⅰ was formed from P3A through thiol/disulfide exchange reaction; then, transients Ⅱ and Ⅲ, each containing two native disulfides, were formed through the recognition and interaction of transient Ⅰ with P4B or P6B and the thiol group's oxidation reaction mainly using GSSG as oxidative reagent; finally, transients Ⅱ and Ⅲ, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

7.
Lin CC  Chang JY 《Biochemistry》2007,46(12):3925-3932
Bovine alpha-interferon (BoINF-alpha) is a single polypeptide protein containing 166 amino acids, two disulfide bonds (Cys1-Cys99 and Cys29-Cys138), and five stretches of alpha-helical structure. The pathway of oxidative folding of BoINF-alpha has been investigated here. Of the eight possible one- and two-disulfide isomers, only two nativelike one-disulfide isomers, BoINF-alpha (Cys1-Cys99) and BoINF-alpha (Cys29-Cys138), predominate as intermediates along the folding pathway. More strikingly, alpha-helical structures formed almost quantitatively before any detectable formation of a disulfide bond. This is demonstrated by the observation that fully reduced BoINF-alpha (starting material of oxidative folding) and reduced carboxymethylated BoINF-alpha both exhibit alpha-helical structure content indistinguishable form that of native BoINF-alpha. The folding mechanism of BoINF-alpha appears to be compatible with the framework model, in which secondary structures fold first, followed by docking (compaction) of preformed secondary structural elements yielding the native structure.  相似文献   

8.
The major oxidative folding pathways of bovine pancreatic ribonuclease A at pH 8.0 and 25 degrees C involve a pre-equilibrium steady state among ensembles of intermediates with zero, one, two, three and four disulfide bonds. The rate-determining steps are the reshuffling of the unstructured three-disulfide ensemble to two native-like three-disulfide species, des-[65-72] and des-[40-95], that convert to the native structure during oxidative formation of the fourth disulfide bond. Under the same regeneration conditions, with oxidized and reduced DTT, used previously for kinetic oxidative-folding studies of this protein, the addition of 4 microM protein disulfide isomerase (PDI) was found to lead to catalysis of each disulfide-formation step, including the rate-limiting rearrangement steps in which the native-like intermediates des-[65-72] and des-[40-95] are formed. The changes in the distribution of intermediates were also determined in the presence and absence of PDI at three different temperatures (with the DTT redox system) as well as at 25 degrees C (with the glutathione redox system). The results indicate that the acceleration of the formation of native protein by PDI, which we observed earlier, is due to PDI catalysis of each of the intermediate steps without changing the overall pathways or folding mechanism.  相似文献   

9.
K Saito  E Welker  H A Scheraga 《Biochemistry》2001,40(49):15002-15008
The conformational folding of the nativelike intermediate des-[40-95] on the major oxidative folding pathway of bovine pancreatic ribonuclease A (RNase A) has been examined at various pHs and temperatures in the absence of a redox reagent. Des-[40-95] has three of the four disulfide bonds of native RNase A and lacks the bond between Cys40 and Cys95. This three-disulfide species was unfolded at low pH to inhibit any disulfide reshuffling and was refolded at higher pH, allowing both conformational folding and disulfide-reshuffling reactions to take place. As a result of this competition, 15-85% of des-[40-95], depending on the experimental conditions, undergoes intramolecular disulfide-reshuffling reactions. That portion of the des-[40-95] population which has native isomers of essential proline residues appears to fold faster than the disulfide reaction can occur. However, when the folding is retarded, conceivably by the presence of non-native isomers of essential proline residues, des-[40-95] may reshuffle before completing the conformational folding process. These results enable us to distinguish among current models for the critical structure-forming step in oxidative folding and reveal a new model for coupling proline isomerization to disulfide-bond formation. These experiments also demonstrate that the reshuffling-folding competition assay is a useful tool for detecting structured populations in conformational folding intermediates.  相似文献   

10.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates: two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient I was formed from P3A through thiol/disulfide exchange reaction; then, transients II and III, each containing two native disulfides, were formed through the recognition and interaction of transient I with P4B or P6B and the thiol group’s oxidation reaction mainly using GSSG as oxidative reagent; finally, transients II and III, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

11.
Salamanca S  Li L  Vendrell J  Aviles FX  Chang JY 《Biochemistry》2003,42(22):6754-6761
The leech carboxypeptidase inhibitor (LCI) is a 66-amino acid protein, containing four disulfides that stabilize its structure. This polypeptide represents an excellent model for the study and understanding of the diversity of folding pathways in small, cysteine-rich proteins. The pathway of oxidative folding of LCI has been elucidated in this work, using structural and kinetic analysis of the folding intermediates trapped by acid quenching. Reduced and denatured LCI refolds through a rapid, sequential flow of one- and two-disulfide intermediates and reaches a rate-limiting step in which a mixture of three major three-disulfide species and a heterogeneous population of non-native four-disulfide (scrambled) isomers coexist. The three three-disulfide intermediates have been identified as major kinetic traps along the folding pathway of LCI, and their disulfide structures have been elucidated in this work. Two of them contain only native disulfide pairings, and one contains one native and two non-native disulfide bonds. The coexistence of three-disulfide kinetic traps adopting native disulfide bonds together with a significant proportion of fully oxidized scrambled isomers shows that the folding pathway of LCI features properties exhibited by both the bovine pancreatic trypsin inhibitor and hirudin, two diverse models with extreme folding characteristics. The results further demonstrate the large diversity of disulfide folding pathways.  相似文献   

12.
The technique of disulfide scrambling permits reversible conversion of the native and denatured (scrambled) proteins via shuffling and reshuffling of disulfide bonds. Under strong denaturing conditions (e.g. 6 m guanidinium chloride) and in the presence of a thiol initiator, alpha-lactalbumin (alphaLA) denatures by shuffling its four native disulfide bonds and converts to an assembly of 45 species of scrambled isomers. Among them, two predominant isomers, designated as X-alphaLA-a and X-alphaLA-d, account for about 50% of the total denatured structure of alphaLA. X-alphaLA-a and X-alphaLA-d, which adopt the disulfide patterns of (1-2,3-4,5-6,7-8) and (1-2,3-6,4-5,7-8), respectively, represent the most unfolded structures among the 104 possible scrambled isomers (Chang, J.-Y., and Li, L. (2001) J. Biol. Chem. 276, 9705-9712). In this study, X-alphaLA-a and X-alphaLA-d were purified and allowed to refold through disulfide scrambling to form the native alphaLA. Folding intermediates were trapped kinetically by acid quenching and analyzed quantitatively by reversed phase high pressure liquid chromatography. The results revealed two major on-pathway productive intermediates, two major off-pathway kinetic traps, and at least 30 additional minor transient intermediates. Of the two major on-pathway intermediates, one takes on a native-like alpha-helical domain, and the other comprises a structured beta-sheet, calcium binding domain. The two major kinetic traps are apparently stabilized by locally formed non-native-like structures. Overall, the folding mechanism of alphaLA is essentially congruent with the model of "folding funnel" furnished with a rather intricate energy landscape.  相似文献   

13.
蛋白质的氧化重折叠   总被引:7,自引:0,他引:7  
经过近几十年来广泛而深入的研究,蛋白质氧化重折叠的机制已得到相当详细的阐明。1在已研究过的蛋白质中,大多数蛋白质都是沿着多途径而非单一、特定的途径进行氧化重折叠,这与折叠能量景观学说是一致的。2正是氨基酸残基间的天然相互作用而不是非天然的相互作用控制蛋白质的折叠过程。这一结论与含非天然二硫键的折叠中间体在牛胰蛋白酶抑制剂(BPTI)折叠中所起的重要作用并非相互排斥,因为后者仅仅是进行链内二硫键重排的化学反应所必需,与控制肽链折叠无直接关系。3根据对BPTI的研究,二硫键曾被认为仅仅具有稳定蛋白质天然结构的作用,既不决定折叠途径也不决定其三维构象。这一观点不适用于其它蛋白质。对凝乳酶原的研究表明,天然二硫键的形成是恢复天然构象的前提。天然二硫键的形成与肽键的正确折叠相辅相成,更具有普遍意义。4在氧化重折叠的早期,二硫键的形成基本上是一个随机过程,随着肽链的折叠二硫键的形成越来越受折叠中间体构象的限制。提高重组蛋白质的复性产率是生物技术领域中的一个巨大的挑战。除了分子聚集外,在折叠过程中所形成的二硫键错配分子是导致低复性率的另一个主要原因。氧化重折叠机制的阐明为解决此问题提供了有益的启示。如上所述,在折叠的后期,二硫键的形成决定于折叠中间体的构象,类天然、有柔性的结构有利于天然二硫键形成和正确折叠,具有这类结构的分子为有效的折叠中间体,最终都能转变为天然产物;而无效折叠中间体往往具有稳定的结构,使巯基、二硫键内埋妨碍二硫键重排,并因能垒的障碍不利于进一步折叠。因此,降低无效折叠中间体的稳定性使之转变为有效折叠中间体是提高含二硫键蛋白质复性率的一条基本原则,实验证明,碱性pH、低温、降低蛋白质稳定性的试剂、蛋白质二硫键异构酶、改变蛋白质一级结构是实现这一原则的有效手段。此外,这里还就氧化重折叠的基础和应用研究的前景进行了讨论。  相似文献   

14.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

15.
The structure of wild-type mouse prion protein mPrP(23-231) consists of two distinctive segments with approximately equal size, a disordered and flexible N-terminal domain encompassing residues 23-124 and a largely structured C-terminal domain containing about 40% of helical structure and stabilized by one disulfide bond (Cys(178)-Cys(213)). We have expressed a mPrP mutant with 4 Ala/Ser-->Cys replacements, two each at the N-(Cys(36), Cys(112)) and C-(Cys(134), Cys(169)) domains. Our specific aims are to study the interaction between N- and C-domains of mPrP during the oxidative folding and to produce stabilized isomers of mPrP for further analysis. Oxidative folding of fully reduced mutant, mPrP(6C), generates one predominant 3-disulfide isomer, designated as N-mPrP(3SS), which comprises the native disulfide (Cys(178)-Cys(213)) and two non-native disulfide bonds (Cys(36)-Cys(134) and Cys(112)-Cys(169)) that covalently connect the N- and C-domains. In comparison to wild-type mPrP(23-231), N-mPrP(3SS) exhibits an indistinguishable CD spectra, a similar conformational stability in the absence of thiol and a reduced ability to aggregate. In the presence of thiol catalyst and denaturant, N-mPrP(3SS) unfolds and generates diverse isomers that are amenable to further isolation, structural and functional analysis.  相似文献   

16.
The single-chain insulin (PIP) can spontaneously fold into native structure through preferred kinetic intermediates. During refolding, pairing of the first disulfide A20-B19 is highly specific, whereas pairing of the second disulfide is likely random because two two-disulfide intermediates have been trapped. To get more details of pairing property of the second disulfide, four model peptides of possible folding intermediates with two disulfides were prepared by protein engineering, and their properties were analyzed. The four model peptides were named [A20-B19, A7-B7]PIP, [A20-B19, A6-B7]PIP, [A20-B19, A6-A11]PIP, and [A20-B19, A7-A11]PIP according to their remaining disulfides. The four model peptides all adopt partially folded structure with moderate conformational differences. In redox buffer, the disulfides of the model peptides are more easily reduced than those of the wild-type PIP. During in vitro refolding, the reduced model peptides share similar relative folding rates but different folding yields: The refolding efficiency of the reduced [A20-B19, A7-A11]PIP is about threefold lower than that of the other three peptides. The present results indicate that the folding intermediates corresponding to the present model peptides all adopt partially folded conformation, and can be formed during PIP refolding, but the chance of forming the intermediate with disulfide [A20-B19, A7-A11] is much lower than that of forming the other three intermediates.  相似文献   

17.
Oxidative folding is the fusion of native disulfide bond formation with conformational folding. This complex process is guided by two types of interactions: first, covalent interactions between cysteine residues, which transform into native disulfide bridges, and second, non-covalent interactions giving rise to secondary and tertiary protein structure. The aim of this work is to understand both types of interactions in the oxidative folding of Amaranthus alpha-amylase inhibitor (AAI) by providing information both at the level of individual disulfide species and at the level of amino acid residue conformation. The cystine-knot disulfides of AAI protein are stabilized in an interdependent manner, and the oxidative folding is characterized by a high heterogeneity of one-, two-, and three-disulfide intermediates. The formation of the most abundant species, the main folding intermediate, is favored over other species even in the absence of non-covalent sequential preferences. Time-resolved NMR and photochemically induced dynamic nuclear polarization spectroscopies were used to follow the oxidative folding at the level of amino acid residue conformation. Because this is the first time that a complete oxidative folding process has been monitored with these two techniques, their results were compared with those obtained at the level of an individual disulfide species. The techniques proved to be valuable for the study of conformational developments and aromatic accessibility changes along oxidative folding pathways. A detailed picture of the oxidative folding of AAI provides a model study that combines different biochemical and biophysical techniques for a fuller understanding of a complex process.  相似文献   

18.
Thioredoxins and glutaredoxins as facilitators of protein folding   总被引:3,自引:0,他引:3  
Thiol-disulfide oxidoreductase systems of bacterial cytoplasm and eukaryotic cytosol favor reducing conditions and protein thiol groups, while bacterial periplasm and eukaryotic endoplasmatic reticulum provide oxidizing conditions and a machinery for disulfide bond formation in the secretory pathway. Oxidoreductases of the thioredoxin fold superfamily catalyze steps in oxidative protein folding via protein-protein interactions and covalent catalysis to act as chaperones and isomerases of disulfides to generate a native fold. The active site dithiol/disulfide of thioredoxin fold proteins is CXXC where variations of the residues inside the disulfide ring are known to increase the redox potential like in protein disulfide isomerases. In the catalytic mechanism thioredoxin fold proteins bind to target proteins through conserved backbone-backbone hydrogen bonds and induce conformational changes of the target disulfide followed by nucleophilic attack by the N-terminally located low pK(a) Cys residue. This generates a mixed disulfide covalent bond which subsequently is resolved by attack from the C-terminally located Cys residue. This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thioredoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.  相似文献   

19.
The folding pathway of human epidermal growth factor (EGF) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. Oxidative folding of the fully reduced EGF proceeds through 1-disulfide intermediates and accumulates rapidly as a single stable 2-disulfide intermediate (designated as EGF-II), which represents up to more than 85% of the total protein along the folding pathway. Among the five 1-disulfide intermediates that have been structurally characterized, only one is native, and nearly all of them are bridges by neighboring cysteines. Extensive accumulation of EGF-II indicates that it accounts for the major kinetic trap of EGF folding. EGF-II contains two of the three native disulfide bonds of EGF, Cys(14)-Cys(31) and Cys(33)-Cys(42). However, formation of the third native disulfide (Cys(6)-Cys(20)) for EGF-II is slow and does not occur directly. Kinetic analysis reveals that an important route for EGF-II to reach the native structure is via rearrangement pathway through 3-disulfide scrambled isomers. The pathway of EGF-II to attain the native structure differs from that of three major 2-disulfide intermediates of bovine pancreatic trypsin inhibitor (BPTI). The dissimilarities of folding mechanism(s) between EGF, BPTI, and hirudin are discussed in this paper.  相似文献   

20.
Narayan M  Welker E  Scheraga HA 《Biochemistry》2003,42(23):6947-6955
A recently developed method is used here to characterize some of the folding intermediates, and the oxidative folding processes, of RNase A. This method is based on the ability of trans-[Pt(en)(2)Cl(2)](2+) to oxidize cysteine residues to form disulfide bonds faster than the disulfide bonds can be rearranged by reshuffling or reduction. Variations of this method have enabled us to address three issues. (i) How the nature of the residual structure and/or conformational order that is present, or develops, during the initial stages of folding can be elucidated. It is shown here that there is a 10-fold increase in the propensity of the unfolded reduced forms of RNase A to form the native set of disulfides directly, compared to the propensity under strongly denaturing conditions (4-6 M GdnHCl). Thus, the unfolded reduced forms of RNase A are not statistical coils with a more condensed form than in the GdnHCl-denatured state; rather, it is suggested that reduced RNase A has a little bias toward a native topology. (ii) The structural characterization of oxidative folding intermediates in terms of disulfide pairing is demonstrated; specifically, a lower-limit estimate is made of the percentage of native disulfide-containing molecules in the two-disulfide ensemble of RNase A. (iii) The critical role of structured intermediate species in determining the oxidative folding pathways of proteins was shown previously. Here, we demonstrate that the presence of a structured intermediate in the oxidative folding of proteins can be revealed by this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号