首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
The formation of inner ear sensory epithelia is believed to occur in two steps, initial specification of sensory competent (prosensory) regions followed by determination of specific cell‐types, such as hair cells (HCs) and supporting cells. However, studies in which the HC determination factor Atoh1 was ectopically expressed in nonprosensory regions indicated that expression of Atoh1 alone is sufficient to induce HC formation suggesting that prosensory formation may not be a prerequisite for HC development. To test this hypothesis, interactions between Sox2 and Atoh1, which are required for prosensory and HC formation respectively, were examined. Forced expression of Atoh1 in nonprosensory cells resulted in transient expression of Sox2 prior to HC formation, suggesting that expression of Sox2 is required for formation of ectopic HCs. Moreover, Atoh1 overexpression failed to induce HC formation in Sox2 mutants, confirming that Sox2 is required for prosensory competence. To determine whether expression of Sox2 alone is sufficient to induce prosensory identity, Sox2 was transiently activated in a manner that mimicked endogenous expression. Following transient Sox2 activation, nonprosensory cells developed as HCs, a result that was never observed in response to persistent expression of Sox2. These results, suggest a dual role for Sox2 in inner ear formation. Initially, Sox2 is required to specify prosensory competence, but subsequent down‐regulation of Sox2 must occur to allow Atoh1 expression, most likely through a direct interaction with the Atoh1 promoter. These results implicate Sox2‐mediated changes in prosensory cells as an essential step in their ability to develop as HCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 3–13, 2017  相似文献   

2.
Liu Z  Owen T  Fang J  Zuo J 《PloS one》2012,7(3):e34123

Background

During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling.

Methodology/Principal Findings

We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-negative).

Conclusions/Significance

Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.  相似文献   

3.
Canonical Wnt/β‐catenin signaling has been implicated in multiple developmental events including the regulation of proliferation, cell fate, and differentiation. In the inner ear, Wnt/β‐catenin signaling is required from the earliest stages of otic placode specification through the formation of the mature cochlea. Within the avian inner ear, the basilar papilla (BP), many Wnt pathway components are expressed throughout development. Here, using reporter constructs for Wnt/β‐catenin signaling, we show that this pathway is active throughout the BP (E6‐E14) in both hair cells (HCs) and supporting cells. To characterize the role of Wnt/β‐catenin activity in developing HCs, we performed gain‐ and loss‐of‐function experiments in vitro and in vivo in the chick BP and zebrafish lateral line systems, respectively. Pharmacological inhibition of Wnt signaling in the BP and lateral line neuromasts during the periods of proliferation and HC differentiation resulted in reduced proliferation and decreased HC formation. Conversely, pharmacological activation of this pathway significantly increased the number of HCs in the lateral line and BP. Results demonstrated that this increase was the result of up‐regulated cell proliferation within the Sox2‐positive cells of the prosensory domains. Furthermore, Wnt/β‐catenin activation resulted in enhanced HC regeneration in the zebrafish lateral line following aminoglycoside‐induced HC loss. Combined, our data suggest that Wnt/β‐catenin signaling specifies the number of cells within the prosensory domain and subsequently the number of HCs. This ability to induce proliferation suggests that the modulation of Wnt/β‐catenin signaling could play an important role in therapeutic HC regeneration. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 438–456, 2014  相似文献   

4.
Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time.  相似文献   

5.
Embryonal stem (ES) cells that are homozygous null for the beta(1) integrin subunit fail to differentiate into keratinocytes in vitro but do differentiate in teratomas and wild-type/beta(1)-null chimeric mice. The failure of beta(1)-null ES cells to differentiate in culture might be the result of defective extracellular matrix assembly or reduced sensitivity to soluble inducing factors. By culturing embryoid bodies on dead, deepidermized human dermis (DED) we showed that epidermal basement membrane did not induce beta(1)-null ES cells to undergo keratinocyte differentiation and did not stimulate the differentiation of wild-type ES cells. Coculture with epidermal keratinocytes also had no effect. However, when human dermal fibroblasts were incorporated into DED, the number of epidermal cysts formed by wild-type ES cells increased dramatically, and small groups of keratin 14-positive cells differentiated from beta(1)-null ES cells. Fibroblast-conditioned medium stimulated differentiation of K14-positive cells in wild-type and beta(1)-null embryoid bodies. Of a range of growth factors tested, KGF, FGF10, and TGFalpha all stimulated differentiation of keratin 14-positive beta(1)-null cells, and KGF and FGF10 were shown to be produced by the fibroblasts used in coculture experiments. The effects of the growth factors on wild-type ES cells were much less pronounced, suggesting that the concentrations of inducing factors already present in the medium were not limiting for wild-type cells. We conclude that the lack of beta(1) integrins decreases the sensitivity of ES cells to soluble factors that induce keratinocyte differentiation.  相似文献   

6.
7.
We aimed to investigate the beneficial effect of Celastrol on inner ear stem cells and potential therapeutic value for hearing loss. The inner ear stem cells were isolated and characterized from utricular sensory epithelium of adult mice. The stemness was evaluated by sphere formation assay. The relative expressions of Atoh1, MAP-2 and Myosin VI were measured by RT-PCR and immunoblotting. The up-regulation of MAP-2 was also analysed with immunofluorescence. The in vitro neuronal excitability was interrogated by calcium oscillation. The electrophysiological property was determined by inward current recorded on patch clamp. Our results demonstrated that Celastrol treatment significantly improved the viability and proliferation of mouse inner ear stem cells, and facilitated sphere formation. Moreover, Celastrol stimulated differentiation of mouse inner ear stem cells to neuronal-like cells and enhanced neural excitability. Celastrol also enhanced neuronal-like cell identity in the inner ear stem cell derived neurons, as well as their electrophysiological function. Most notably, these effects were apparently associated with the upregulation of Atoh1 in response to Celastrol treatment. Celastrol showed beneficial effect on inner ear stem cells and held therapeutic promise against hearing loss.  相似文献   

8.
Vestibular hair cells (V–HCs) in the inner ear have important roles and various functions. When V–HCs are damaged, crippling symptoms, such as vertigo, visual field oscillation, and imbalance, are often seen. Recently, several studies have reported differentiation of embryonic stem (ES) cells, as pluripotent stem cells, to HCs, though a method for producing V–HCs has yet to be established. In the present study, we used vestibular cell conditioned medium (V-CM) and effectively induced ES cells to differentiate into V–HCs. Expressions of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5) were significantly increased in ES cells cultured in V-CM for 2 weeks, while those were not observed in ES cells cultured without V-CM. On the other hand, the cochlear HC-related marker Lmod3 was either not detected or detected only faintly in those cells when cultured in V-CM. Our results demonstrate that V-CM has an ability to specifically induce differentiation of ES cells into V–HCs.  相似文献   

9.
The multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132] states: (1) there are many different dynein HC isoforms; (2) each isoform is encoded by a different gene; (3) different isoforms have different functions. Many studies provide evidence in support of the first two statements [Piperno et al., 1990: J Cell Biol 110:379-389; Kagami and Kamiya, 1992: J Cell Sci 103:653-664; Gibbons, 1995: Cell Motil Cytoskeleton 32:136-144; Porter et al., 1996: Genetics 144:569-585; Xu et al., 1999: J Eukaryot Microbiol 46:606-611] and there is evidence that outer arms and inner arms play different roles in flagellar beating [Brokaw and Kamiya, 1987: Cell Motil. Cytoskeleton 8:68-75]. However, there are few studies rigorously testing in vivo whether inner arm dyneins, especially the 1-headed inner arm dyneins, play unique roles. This study tested the third tenet of the multi-dynein hypothesis by introducing mutations into three inner arm dynein HC genes (DYH8, 9 and 12) that are thought to encode HCs associated with 1-headed inner arm dyneins. Southern blots, Northern blots, and RT-PCR analyses indicate that all three mutants (KO-8, 9, and 12) are complete knockouts. Each mutant swims slower than the wild-type cells. The beat frequency of KO-8 cells is lower than that of the wild-type cells while the beat frequencies of KO-9 and KO-12 are not different from that of wild-type cells. Our results suggest that each inner arm dynein HC is essential for normal cell motility and cannot be replaced functionally by other dynein HCs and that not all of the 1-headed inner arm dyneins play the same role in ciliary motility. Thus, the results of our study support the multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132].  相似文献   

10.
During the development of periphery auditory circuitry, spiral ganglion neurons (SGNs) form a spatially precise pattern of innervation of cochlear hair cells (HCs), which is an essential structural foundation for central auditory processing. However, molecular mechanisms underlying the developmental formation of this precise innervation pattern remain not well understood. Here, we specifically examined the involvement of Eph family members in cochlear development. By performing RNA‐sequencing for different types of cochlear cell, in situ hybridization, and immunohistochemistry, we found that EphA7 was strongly expressed in a large subset of SGNs. In EphA7 deletion mice, there was a reduction in the number of inner radial bundles originating from SGNs and projecting to HCs as well as in the number of ribbon synapses on inner hair cells (IHCs), as compared with wild‐type or heterozygous mutant mice, attributable to fewer type I afferent fibers. The overall activity of the auditory nerve in EphA7 deletion mice was also reduced, although there was no significant change in the hearing intensity threshold. In vitro analysis further suggested that the reduced innervation of HCs by SGNs could be attributed to a role of EphA7 in regulating outgrowth of SGN neurites as knocking down EphA7 in SGNs resulted in diminished SGN fibers. In addition, suppressing the activity of ERK1/2, a potential downstream target of EphA7 signaling, either with specific inhibitors in cultured explants or by knocking out Prkg1, also resulted in reduced SGN fibers. Together, our results suggest that EphA7 plays an important role in the developmental formation of cochlear innervation pattern through controlling SGN fiber ontogeny. Such regulation may contribute to the salience level of auditory signals presented to the central auditory system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 452–469, 2016  相似文献   

11.
12.
Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss.Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.Open in a separate windowClick here to view.(51M, flv)  相似文献   

13.
Functional conservation of atonal and Math1 in the CNS and PNS   总被引:7,自引:0,他引:7  
To determine the extent to which atonal and its mouse homolog Math1 exhibit functional conservation, we inserted (beta)-galactosidase (lacZ) into the Math1 locus and analyzed its expression, evaluated consequences of loss of Math1 function, and expressed Math1 in atonal mutant flies. lacZ under the control of Math1 regulatory elements duplicated the previously known expression pattern of Math1 in the CNS (i.e., the neural tube, dorsal spinal cord, brainstem, and cerebellar external granule neurons) but also revealed new sites of expression: PNS mechanoreceptors (inner ear hair cells and Merkel cells) and articular chondrocytes. Expressing Math1 induced ectopic chordotonal organs (CHOs) in wild-type flies and partially rescued CHO loss in atonal mutant embryos. These data demonstrate that both the mouse and fly homologs encode lineage identity information and, more interestingly, that some of the cells dependent on this information serve similar mechanoreceptor functions.  相似文献   

14.
Two dyneins can be extracted from Tetrahymena ciliary axonemes. The 22S dynein contains three heavy chains (HC), sediments at 22S in a sucrose gradient, and makes up the outer arms. The 14S dynein contains two to six HCs, sediments at 14S, and is thought to contribute to formation of the inner arms. We have identified two large proteins that are extracted from Tetrahymena axonemes with high salt and that sediment together at approximately 18S. The two large proteins cleave when subjected to UV light in the presence of ATP and vanadate, suggesting both proteins are dynein HC. Antibodies against one of the 18S HCs do not recognize 22S dynein HCs. Antibodies to 22S dynein HC do not bind appreciably to 18S dynein photocleavage fragments. Taken together, these results indicate that the large proteins that sediment at 18S are axonemal dynein heavy chains.  相似文献   

15.
Gap-junction channels (GJCs) communicate the cytoplasm of adjacent cells and are formed by head-to-head association of two hemichannels (HCs), one from each of the neighbouring cells. GJCs mediate electrical and chemical communication between cells, whereas undocked HCs participate in paracrine signalling because of their permeability to molecules such as ATP. Sustained opening of HCs under pathological conditions results in water and solute fluxes that cannot be compensated by membrane transport and therefore lead to cell damage. Mutations of Cx26 (connexin 26) are the most frequent cause of genetic deafness and it is therefore important to understand the structure–function relationship of wild-type and deafness-associated mutants. Currently available connexin HC expression systems severely limit the pace of structural studies and there is no simple high-throughput HC functional assay. The Escherichia coli-based expression system presented in the present study yields milligram amounts of purified Cx26 HCs suitable for functional and structural studies. We also show evidence of functional activity of recombinant Cx26 HCs in intact bacteria using a new growth complementation assay. The E. coli-based expression system has high potential for structural studies and high-throughput functional screening of HCs.  相似文献   

16.
Precursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells. In addition to Rb, the cyclin dependent kinase inhibitor (CKI) p21 is expressed in developing hair cells, suggesting that p21 is an upstream effector of pRb activity. p21 apparently cooperates with other CKIs, as p21-null mice exhibited an unaltered inner ear phenotype. By contrast, Rb inactivation led to aberrant hair cell proliferation, as analysed at birth in a loss-of-function/transgenic mouse model. Supernumerary hair cells expressed various cell type-specific differentiation markers, including components of stereocilia. The extent of alterations in stereociliary bundle morphology ranged from near-normal to severe disorganization. Apoptosis contributed to the mutant phenotype, but did not compensate for the production of supernumerary hair cells, resulting in hyperplastic sensory epithelia. The Rb-null-mediated proliferation led to a distinct pathological phenotype, including multinucleated and enlarged hair cells, and infiltration of hair cells into the mesenchyme. Our findings demonstrate that the pRb pathway is required for hair cell quiescence and that manipulation of the cell cycle machinery disrupts the coordinated development within the inner ear sensory epithelia.  相似文献   

17.
During embryonic development of the inner ear, the sensory primordium that gives rise to the organ of Corti from within the cochlear epithelium is patterned into a stereotyped array of inner and outer sensory hair cells separated from each other by non-sensory supporting cells. Math1, a close homolog of the Drosophila proneural gene atonal, has been found to be both necessary and sufficient for the production of hair cells in the mouse inner ear. Our results indicate that Math1 is not required to establish the postmitotic sensory primordium from which the cells of the organ of Corti arise, but instead is limited to a role in the selection and/or differentiation of sensory hair cells from within the established primordium. This is based on the observation that Math1 is only expressed after the appearance of a zone of non-proliferating cells that delineates the sensory primordium within the cochlear anlage. The expression of Math1 is limited to a subpopulation of cells within the sensory primordium that appear to differentiate exclusively into hair cells as the sensory epithelium matures and elongates through a process that probably involves radial intercalation of cells. Furthermore, mutation of Math1 does not affect the establishment of this postmitotic sensory primordium, even though the subsequent generation of hair cells is blocked in these mutants. Finally, in Math1 mutant embryos, a subpopulation of the cells within the sensory epithelium undergo apoptosis in a temporal gradient similar to the basal-to-apical gradient of hair cell differentiation that occurs in the cochlea of wild-type animals.  相似文献   

18.
Using senescence marker protein 30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice, which cannot synthesize vitamin C (VC), we examined whether modulating VC level affects age-related hearing loss (AHL). KO and wild-type (WT) C57BL/6 mice were given water containing 1.5 g/L VC [VC(+)] or 37.5 mg/L VC [VC(−)]. At 10 months of age, KO VC(−) mice showed significant reduction in VC level in the inner ear, plasma, and liver, increase in auditory brainstem response (ABR) thresholds, and decrease in the number of spiral ganglion cells compared to WT VC(−), WT VC(+), and KO VC(+) mice. There were no differences in VC level in the inner ear, ABR thresholds, or the number of spiral ganglion cells among WT VC(−), WT VC(+), and KO VC(+) mice. These findings suggest that VC depletion can accelerate AHL but that supplementing VC may not increase VC level in the inner ear or slow AHL in mice.  相似文献   

19.
In Dictyostelium discoideum, several G proteins are known to mediate the transduction of signals that direct chemotactic movement and regulate developmental morphogenesis. The G protein alpha subunit encoded by the Galpha4 gene has been previously shown to be required for chemotactic responses to folic acid, proper developmental morphogenesis, and spore production. In this study, cells overexpressing the wild type Galpha4 gene, due to high copy gene dosage (Galpha4HC), were found to be defective in the ability to form the anterior prestalk cell region, express prespore- and prestalk-cell specific genes, and undergo spore formation. In chimeric organisms, Galpha4HC prespore cell-specific gene expression and spore production were rescued by the presence of wild-type cells, indicating that prespore cell development in Galpha4HC cells is limited by the absence of an intercellular signal. Transplanted wild-type tips were sufficient to rescue Galpha4HC prespore cell development, suggesting that the rescuing signal originates from the anterior prestalk cells. However, the deficiencies in prestalk-specific gene expression were not rescued in the chimeric organisms. Furthermore, Galpha4HC cells were localized to the prespore region of these chimeric organisms and completely excluded from the anterior prestalk region, suggesting that the Galpha4 subunit functions cell-autonomously to prevent anterior prestalk cell development. The presence of exogenous folic acid during vegetative growth and development delayed anterior prestalk cell development in wild-type but not galpha4 null mutant aggregates, indicating that folic acid can inhibit cell-type-specific differentiation by stimulation of the Galpha4-mediated signal transduction pathway. The results of this study suggest that Galpha4-mediated signals can regulate cell-type-specific differentiation by promoting prespore cell development and inhibiting anterior prestalk-cell development.  相似文献   

20.
It has been hypothesized that O(2) sensing in type I cells of the carotid body and erythropoietin (EPO)-producing cells of the kidney involves protein components identical to the NADPH oxidase system responsible for the respiratory burst of phagocytes. In the present study, we evaluated O(2) sensing in mice with null mutant genotypes for two components of the phagocytic oxidase. Whole body plethysmography was used to study unanesthetized, unrestrained mice. When exposed to an acute hypoxic stimulus, gp91(phox)-null mutant and wild-type mice increased their minute ventilation by similar amounts. In contrast, p47(phox)-null mutant mice demonstrated increases in minute ventilation in response to hypoxia that exceeded that of their wild-type counterparts: 98.0 +/- 18.0 vs. 20.0 +/- 13.0% (n = 11, P = 0.003). In vitro recordings of carotid sinus nerve (CSN) activity demonstrated that resting (basal) neural activity was marginally elevated in p47(phox)-null mutant mice. With hypoxic challenge, mean CSN discharge was 1.5-fold greater in p47(phox)-null mutant than in wild-type mice: 109.61 +/- 13.29 vs. 72.54 +/- 7.65 impulses/s (n = 8 and 7, respectively, P = 0.026). Consequently, the hypoxia-evoked CSN discharge (stimulus-basal) was approximately 58% larger in p47(phox)-null mutant mice. Quantities of EPO mRNA in kidney were similar in gp91(phox)- and p47(phox)-null mutant mice and their respective wild-type controls exposed to hypobaric hypoxia for 72 h. These findings confirm the previous observation that absence of the gp91(phox) component of the phagocytic NADPH oxidase does not alter the O(2)-sensing mechanism of the carotid body. However, absence of the p47(phox) component significantly potentiates ventilatory and chemoreceptor responses to hypoxia. O(2) sensing in EPO-producing cells of the kidney appears to be independent of the gp91(phox) and p47(phox) components of the phagocytic NADPH oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号