首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
遮荫处理对红叶石楠和洒金桃叶珊瑚光合特性的影响   总被引:2,自引:0,他引:2  
研究不同遮荫处理(透光率分别为20%、40%、60%、100%)对红叶石楠和洒金桃叶珊瑚两种观叶植物光合特性的影响.结果表明:遮荫处理6周后,与遮荫状态下原位测定相比,自然状态下两种植物异位测定的光合作用增强,随着遮荫程度的增强, 叶片净光合速率呈增大趋势, 红叶石楠和洒金桃叶珊瑚的最大值分别为9.7和8.3 μmol·m-2·s-1;两种植物的蒸腾速率显著提高.遮荫处理不同程度地提高了两种植物叶片叶绿素a、b含量、叶绿素a+b总量及叶绿素/类胡萝卜素值,降低了叶绿素a/b值,但类胡萝卜素含量无显著变化.在自然状态下,红叶石楠净光合速率和蒸腾速率的表型可塑性指数(PPI)分别为2.08和3.21;洒金桃叶珊瑚的相应指标仅为0.55和1.60.两种植物的叶绿素和类胡萝卜素含量相对稳定,受外界环境因子影响相对较小.洒金桃叶珊瑚的耐荫性高于红叶石楠.  相似文献   

2.
遮光处理对西葫芦幼苗形态特征及光合生理特性的影响   总被引:19,自引:4,他引:15  
研究了不同遮光处理对西葫芦幼苗形态及光合生理特性的影响.结果表明,在60%透光率条件下,西葫芦幼苗具有较高的相对生长率、净光合速率、气孔导度、蒸腾速率、单叶水分利用效率、饱和蒸汽压、表观量子效率和叶绿素含量,而胞间CO2浓度较低;西葫芦幼苗具有较高的光饱和点(1 125 μmol·m-2·s-1)、较低的光补偿点(15.2 μmol·m-2·s-1).弱光下西葫芦幼苗较耐低浓度CO2,而强光下的幼苗较耐高浓度CO2.60%透光率下西葫芦幼苗叶片丙二醛和脯氨酸含量最低,而过氧化物酶和过氧化氢酶活性则最高.  相似文献   

3.
Terminal drought markedly reduces leaf photosynthesis of chickpea (Cicer arietinum L.) during seed filling. A study was initiated to determine whether photosynthesis and internal recycling of CO(2) by the pods can compensate for the low rate of photosynthesis in leaves under water deficits. The influence of water deficits on the rates of photosynthesis and transpiration of pods and subtending leaves in chickpea (cv. Sona) was investigated in two naturally-lit, temperature-controlled glasshouses. At values of photosynthetically active radiation (PAR) of 900 micromol m(-2) s(-1) and higher, the rate of net photosynthesis of subtending leaves of 10-d-old pods was 24 and 6 micromol m(-2) s(-1) in the well-watered (WW) and water-stressed (WS) plants when the covered-leaf water potential (Psi) was -0.6 and -1.4 MPa, respectively. Leaf photosynthesis further decreased to 4.5 and 0.5 micromol m(-2) s(-1) as Psi decreased to -2.3 and -3.3 MPa, respectively. At 900--1500 micromol m(-2) s(-1) PAR, the net photosynthetic rate of 10-d-old pods was 0.9-1.0 micromol m(-2) s(-1) in the WW plants and was -0.1 to -0.8 micromol m(-2) s(-1) in the WS plants. The photosynthetic rates of both pods and subtending leaves decreased with age, but the rate of transpiration of the pods increased with age. The rates of respiration and net photosynthesis inside the pods were estimated by measuring the changes in the internal concentration of CO(2) of covered and uncovered pods during the day. Both the WW and WS pods had similar values of internal net photosynthesis, but the WS pods showed significantly higher rates of respiration suggesting that the WS pods had higher gross photosynthetic rates than the WW pods, particularly in the late afternoon. When (13)CO(2) was injected into the gas space inside the pod, nearly 80% of the labelled carbon 24 h after injection was observed in the pod wall in both the WW and WS plants. After 144 h the proportion of (13)C in the seed had increased from 19% to 32% in both treatments. The results suggest that internal recycling of CO(2) inside the pod may assist in maintaining seed filling in water-stressed chickpea.  相似文献   

4.
苗期遮光光质对生姜光合及生长的影响   总被引:5,自引:0,他引:5  
以不同颜色塑料薄膜为遮光材料,研究了苗期遮光光质对生姜生长及光合作用的影响.结果表明:幼苗覆膜期,生姜叶片叶绿素含量以蓝膜及绿膜处理较高,白膜次之,红膜较低;叶片Pn则以绿膜处理较高,为14.9 μmol·m-2·s-1(第4叶),分别较白膜、红膜及蓝膜提高5.7%、10.4%和18.3%.旺盛生长期撤膜后,Pn较幼苗期升高,但处理间的变化趋势与幼苗期相似;新生叶片叶绿素含量除红膜处理较低外,其它处理无显著差异,但下位叶片叶绿素含量则以蓝膜和红膜处理显著低于绿膜和白膜处理.蓝膜处理生姜植株茎秆增高、变细,分枝数较少;绿膜处理植株根、茎、叶及根茎鲜质量较高,白膜、红膜及蓝膜处理依次降低,收获时,其产量分别达57 000、53 709、51 487和48 712 kg·hm-2.说明生姜苗期采用绿膜遮光,可增强叶片光合作用,促进植株生长,提高生姜产量.  相似文献   

5.
热带季节雨林冠层树种绒毛番龙眼的光合生理生态特性   总被引:15,自引:0,他引:15  
采用Li-6400便携式光合作用测定仪,对西双版纳热带季节雨林冠层树种绒毛番龙眼成树树冠上、中、下3层叶片进行了测定,分析西双版纳热带季节雨林冠层树木的光合作用.结果表明,绒毛番龙眼成树具有喜光的光合特性,光饱和点较高(1 000~1 500 μmol·m-2·s-1),而光补偿点较低(7.7~15.3 μmol·m-2·s-1),对光环境有较强的适应和调节能力,光合有效辐射是影响绒毛番龙眼光合日进程的关键因子;12月,叶片处于成熟期,生长良好,光合能力较强,树冠上层净光合速率(Pn)日变化为单峰型,最大净光合速率(Amax)约为8.9 μmol CO2·m-2·s-1;4月处于新老树叶更替期,光合能力下降,树冠上层Pn日变化为双峰型,中午出现“午休”现象,树冠上层Amax约为4.3 μmol CO2·m-2·s-1;7月上、中层叶片Pn为单峰型,下层出现“午休”.如人为使CO2浓度在短期内迅速升高,则绒毛番龙眼的Pn会增加,而气孔导度和蒸腾速率降低;CO2浓度从400 μmol·mol-1升高到800 μmol·mol-1时,干季水分利用效率(WUE)提高约50%~100%,雨季WUE较低.  相似文献   

6.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

7.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

8.
遮荫条件下绞股蓝光合作用特点的研究   总被引:14,自引:2,他引:12  
在夏季遮荫条件下栽培绞股蓝的净光合速率日变化呈现不典型的双峰曲线,第1峰值出现在11:00时,达13.8μmolCO2·m^-2·S^-1日净光合速率达到176.97μmol CO2·m^-2,是强光下栽培的3.1倍;净光合速率和光量子通量密度呈正相关,相对湿度对净光合速率的影响小.强光下栽培绞股蓝。光合作用“午休”现象明显,净光合速率日变化呈现双峰曲线,第1峰值出现在10:00时,为3.0μmol CO2·m^-2·s^-1.第2峰值出现在14:00时,为1.25μmol CO2·m^-2·s^-1;相对湿度与净光合速率成正相关,对净光合速率的影响大.当光量子通量超过700μmol·m^-2·s^-1时,净光合速率与光量子通量密度呈负相关.在影响该植物蒸腾速率的诸多因子中,蒸腾速率和气孔导度之间的相关性最为显著.因此绞股蓝属于高度耐荫而怕光的植物.人工栽培应重点考虑光照因子.  相似文献   

9.
苯丙烯酸对黄瓜幼苗生理特性的影响   总被引:9,自引:2,他引:7  
采用基质栽培模拟实验,研究了不同浓度苯丙烯酸对黄瓜幼苗生理特性的影响.结果表明,苯丙烯酸对黄瓜幼苗的光合色素、光合速率、蒸腾速率和根系活力产生了抑制作用.当处理浓度为25μmol·L-1时,对类胡萝卜素产生抑制作用,对叶绿素a、叶绿素b为促进作用;当浓度为50μmol·L-1时,对光合速率、蒸腾速率和根系活力均产生显著的抑制作用(P<0.05),并随着处理浓度的增加抑制作用增强;当浓度为150μmol·L-1时,对叶绿素a、叶绿素b产生显著抑制作用(P<0.05);随着处理浓度的增加,对黄瓜上述生理特性的抑制作用增强.低浓度苯丙烯酸(25~50μmol·L-1)对幼苗根系活力的抑制强度不大,可在处理后期得到恢复;高浓度(100~150μmol·L-1)处理则表现出显著的抑制作用,随着处理时间延长,抑制作用增强(P<0.05).  相似文献   

10.
Sap flow, as a measure of transpiration, was monitored in 2-year-old lemon trees growing in pots. Eight trees were used in the experiment, four of which were placed under a rectangular shading net, while the other four were maintained in the open air. Daily averages of canopy conductance and photosynthesis were not affected by shading; however, the daily transpiration was reduced in shaded plants, which displayed an increase in water use efficiency compared with exposed trees. The decoupling coefficient was higher in the shaded trees, indicating that the transpiration of lemon trees was efficiently controlled by stomata in exposed plants, while the transpiration rate was mainly influenced by radiation in the plants growing under the net. This influence was more pronounced in the afternoon, when the whole tree transpiration was largely dominated by equilibrium transpiration in the plants under netting, and the relationship between transpiration and radiation showed a steeper slope in shaded trees. The reduction in transpiration and the maintenance of photosynthesis in shaded plants with respect to exposed trees indicated that screen structures in semi-arid and arid environments could be considered as an intermediate solution for reducing plant water stress and increasing water use efficiency.  相似文献   

11.
干旱胁迫下石灰花楸幼苗叶片的解剖结构和光合生理响应   总被引:1,自引:0,他引:1  
采用盆栽控水设置4种水分梯度,研究1年生石灰花楸幼苗叶片解剖结构和光合生理指标对干旱胁迫的响应。结果显示:(1)干旱胁迫下,石灰花楸叶片逐渐变薄,轻度和中度胁迫下栅海比显著升高,而重度胁迫下显著降低。(2)干旱胁迫抑制了光合色素合成,降低了叶绿素和类胡萝卜素含量,同时使叶绿素a/b和叶绿素/类胡萝卜素值升高。(3)随干旱程度加剧,净光合速率、蒸腾速率和气孔导度日变化整体下降,胞间CO2浓度整体上升,光合限制以非气孔因素为主。研究表明,石灰花楸能根据水分亏缺程度调整叶片结构和光合生理特征以维持生存和生长,具有较强的耐旱性。  相似文献   

12.
Ammonium Nutrition Enhances Chlorophyll and Glaucousness in Kohlrabi   总被引:2,自引:0,他引:2  
Kohlrabi (Brassica oleracea var.gongylodes) plants were grownin the greenhouse under autumn conditions and fertilized eitherwith pellets containing nitrogen as 40% ammonium sulphate and60% urea or with nutrient solution containing nitrogen predominantlyas nitrate. Plants given nitrogen as ammonium ions developedglaucous leaves compared to those supplied with nitrate whichformed glossy leaves. Ammonium-induced glaucousness was theresult of a two-fold increase in the amount of epicuticularwax and a markedly altered fine structure. Leaves from ammoniumfertilized kohlrabi plants also showed a 21% increase in chlorophyllcontent together with a reduction in the chlorophyll a:b ratioand decreased ground state fluorescence compared to plants suppliedwith nitrate. Photosynthesis and stomatal transpiration wereunaffected by the form of supplied nitrogen. Brassica oleracea ; chlorophyll; chlorophyll fluorescence; epicuticular wax; glaucousness; photosynthesis; transpiration  相似文献   

13.
Aucuba japonica varieties are common evergreen understory shrubs in Japan.Aucuba japonica var.borealis is distributed on the Sea of Japan side of Honshu and Hokkaido where heavy snow cover lasts for more than 3 months in winter.Aucuba japonica var.japonica is distributed in areas with shallow or no snow on the Pacific Ocean side of Honshu and Shikoku. The ecophysiological characteristics of var.borealis were compared with those of var.japonica to examine the effects of heavy and long-term snow cover on the life cycle of var.borealis. Shoots of both varieties were shaded in crushed ice for 110 days, but their photosynthetic activities, chlorophyll contents and the chlorophylla/b ratio was not affected. The leaves of var.borealis were no less frost tolerant than those of var.japonica. In spite of the difference in environmental factors, both varieties had similar characteristics in seasonal changes of photosynthesis, respiration and chlorophylla/b ratio. These results suggest that var.japonica could survive in areas with heavy snow where it does not normally occur. Leaf net production (LNP) was estimated based on the microclimatic data and seasonal photosynthetic and respiration rates. The difference in the annual LNP between the two varieties was equivalent to the difference in the LNP during the snow season. One of the major effects of snow cover is to interrupt and reduce the production period of var.borealis.  相似文献   

14.
毒莴苣是我国东南沿海地区的新入侵杂草,也是国家进境植物的检疫对象.调查发现,毒莴苣植株高大,易在入侵地形成群落优势种;常见的伴生杂草有小飞蓬、野塘蒿、鬼针草、裂叶月见草、裂叶牵牛、狗尾草、野胡萝卜、苍耳、一年蓬、山莴苣、葎草、龙葵和钻形紫菀等.应用LCA 4光合蒸腾测定系统对毒莴苣进行净光合速率测定,结果表明:该种实测净光合速率高达21.22±0.45 μmol CO2·m-2·s-1,比入侵性杂草一年蓬、野塘蒿稍低,比藜、北美车前、山莴苣等高,是一种高光效植物;根据毒莴苣的光合-响应曲线,该外来入侵种的理论光补偿点为37.58 μmol·m-2·s-1, 光饱和点为1 480 μmol·m-2·s-1,理论最大净光合速率20.81 μmol CO2·m-2·s-1;毒莴苣的光合作用具有午休现象,是由于高光照和高温导致气孔阻力增加、气孔关闭,影响了植株对外的气体交换;影响净光合速率的主要因素是气孔导度、叶面光合有效辐射和叶片的蒸腾.  相似文献   

15.
镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响   总被引:21,自引:0,他引:21  
孙建云  沈振国 《应用生态学报》2007,18(11):2605-2610
以2个耐镉(Cd)性不同的甘蓝品种为材料,研究了不同Cd浓度(0、20、50、100μmol.L-1)对甘蓝植株生长、叶片光合特性和养分吸收的影响.结果表明:Cd敏感品种在低浓度Cd(20μmol.L-1)处理下生长受到明显抑制,叶片净光合速率(Pn)、气孔导度(Gs)、PSⅡ光化学效率(Fv/Fm)、PSⅡ光合电子传递量子效率(ΦPSⅡ)及地上部、根系干质量显著降低;Cd耐性品种在高浓度Cd(50和100μmol.L-1)处理下生长和光合特性受到显著影响;Cd胁迫降低了甘蓝叶片叶绿素a和b含量,尤其对叶绿素a的影响较大,进而抑制了叶片光合能力.Cd胁迫显著降低了植株对Mn的吸收,抑制了Mg和Fe从根部向地上部的转运,且Cd敏感品种受抑制幅度更大;Cd胁迫促进了Cd耐性品种对P和S的吸收,而Cd敏感品种相反.因此,Cd胁迫下甘蓝敏感品种叶片Mn、Fe、Mg、S和P含量的降低是影响其叶片光合作用,进而抑制植株生长的重要生理原因.  相似文献   

16.
BACKGROUND AND AIMS: Data are presented from 39 species of mosses and 16 liverworts for ratios of chlorophylls and total carotenoids, and light saturation of photosynthetic electron flow or photosynthetic CO2 uptake, in relation to the postulate that bryophyte cells in general show shade-plant characteristics. METHODS: Pigment concentrations were measured by spectrophotometer in 80 % acetone extracts. Light-saturation curves were constructed by (modulated) chlorophyll florescence and for some species by infra-red gas analysis. KEY RESULTS: The pigment measurements were widely variable but broadly in line with the findings of previous authors. Median values (mosses/liverworts) were: total chlorophyll, 1.64/3.76 mg g(-1); chlorophyll a : b, 2.29/1.99; chlorophylls : carotenoids, 4.74/6.75). The PPFD values at 95 % saturation (estimated from fitted curves) also ranged widely, but were almost all <1000 micromol m(-2) s(-1); the median for mosses was 583 and for liverworts 214 micromol m(-2) s(-1). The two highest PPFD95% values were from Polytrichum species with lamella systems forming a ventilated photosynthetic tissue. Total chlorophyll, chlorophyll a : b and chlorophylls : carotenoids all correlated significantly with PPFD95%. CONCLUSIONS: Bryophytes include but are not inherently shade plants. Light-saturation levels for species of open sun-exposed habitats are lower than for vascular sun plants and are probably limited by CO2 diffusion into unistratose leaves; this limit can only be exceeded by bryophytes with ventilated photosynthetic tissues which provide increased area for CO2 uptake.  相似文献   

17.
辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程   总被引:7,自引:0,他引:7  
应用CIRAS-2型便携式光合作用系统,测定了不同土壤含水量下辽东楤木光合作用与蒸腾作用的光响应过程,探讨了辽东楤木对光照环境和土壤水分的适应性.结果表明:辽东楤木的净光合速率(Pn)、蒸腾速率(Tr)和叶片水分利用效率(WUE)对光量子通量密度(PFD)的响应过程不同;在强光范围内(PFD 800~1 800 μmol·m-2·s-1),随着光强增加,辽东楤木的Pn变化较小,而Tr逐渐减小,WUE明显提高.辽东楤木的光饱和点(LSP)和光补偿点(LCP)分别在800和30 μmol·m-2·s-1左右,且受土壤含水量变化的影响较小;但其光合量子效率(Ф)和暗呼吸速率(Rd)受土壤含水量变化的影响较大.辽东楤木的Pn和WUE对土壤含水量的变化有明显的阈值响应,其高效用水的土壤相对含水量(RWC)在44%~79%;在此范围内,辽东楤木能同时获得较高的光合速率和水分利用效率.  相似文献   

18.
遮阴对闽楠叶绿素含量和光合特性的影响   总被引:1,自引:0,他引:1  
为探讨闽楠对不同光环境的光合适应机制,以2年生闽楠幼苗为材料,设置3个光照处理(全光照、遮光率50%和遮光率78%),适应6个月后,测定其叶绿素含量、气体交换和叶绿素荧光同步数据,研究不同光环境处理对闽楠叶片叶绿素含量、叶绿素荧光参数和光合特性的影响.结果表明: 3种光照处理下,闽楠叶片叶绿素a、叶绿素b、叶绿素(a+b)和类胡萝卜素含量大小次序为78%遮光率>50%遮光率>全光照,但不同光照处理对闽楠叶绿素a/b值没有显著影响.遮阴条件下,闽楠叶片光补偿点(LCP)降低,光饱和点(LSP)和表观量子效率(AQY)升高,说明遮阴条件下闽楠叶片对弱光和强光的利用能力均有所提高;最大净光合速率(Pn max)、光下暗呼吸速率(Rd)和最大电子传递速率(Jmax)均增大.在不同处理间,闽楠叶片净光合速率(Pn)、CO2气孔导度(gsc)、胞间CO2浓度(Ci)和叶肉导度(gm)均存在显著差异.Pngm的大小顺序为: 78%遮光率>50%遮光率>全光照.78%遮光率处理下gsc显著大于全光照.50%遮光率条件和78%遮光率条件下Ci均显著小于全光照.78%遮光率条件下PSⅡ实际光量子产量(Fv′/Fm′)、PSⅡ光化学效率(ΦPSⅡ)和电子传递速率(J)均显著大于50%遮光率条件和全光照.由此可知,在遮阴条件下闽楠可以通过增加叶绿素含量、AQY、Jgscgm来增大光合能力.  相似文献   

19.
遮荫对南方红豆杉光合特性及生活史型影响   总被引:6,自引:4,他引:2  
对浙江省富阳市种植的5年生南方红豆杉,89%遮荫的条件下生长的南方红豆杉与46.4%遮荫及自然光条件诱导50天的南方红豆杉的光合特性、光合色素及其生活史型的研究。结果表明:89%遮荫、46.4%遮荫和自然光的光补偿点分别为18.88,30.52和65.34 μmol·m-2·s-1,光饱和点分别为287.01,258.25和358.92 μmol·m-2·s-1,遮荫可以降低南方红豆杉的光补偿点和光饱和点,从而能够更好地利用弱光,同时提高光合速率,增强了南方红豆杉的光合能力,其中以89%遮荫的变化最明显。随着遮荫程度的增大,南方红豆杉叶片的叶绿素a、叶绿素b及类胡萝卜素等光合色素的含量均增大,叶绿素a与叶绿素b含量的比值减小,说明遮荫可以增加植物对光能的利用,尤其是增加了对蓝紫光的利用,提高了光合效能。研究还发现遮荫对南方红豆杉的生活史型有一定的影响,89%遮荫、46.4%和自然光的生活史型分别为V0.836C0.164,V0.625C0.375和V0.772C0.228,以89%遮荫的营养生长最为旺盛。因此,89%遮荫是这三种光照条件中南方红豆杉营养生长的最适条件。  相似文献   

20.
Multicellular marine plants were collected from their natural habitats and the quantum efficiency of their photosynthesis was determined in the laboratory in five narrow wave length bands in the visible spectrum. The results along with estimates of the relative absorption by the various plastid pigments show a fairly uniform efficiency of 0.08 molecules O2 per absorbed quantum for (a) chlorophyll of one flowering plant, green algae, and brown algae, (b) fucoxanthol and other carotenoids of brown algae, and (c) the phycobilin pigments phycocyanin and phycoerythrin of red algae. The carotenoids of green algae are sometimes less efficient while those of red algae are largely or entirely inactive. Chlorophyll a of red algae is about one-half as efficient (o2 = 0.04) as either the phycobilins, or the chlorophyll of most other plants. These results as well as those of high intensity and of fluorescence experiments are consistent with a mechanism in which about half the chlorophyll is inactive while the other half is fully active and is an intermediate in phycoerythrin- and phycocyanin-sensitized photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号