首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
将解脂耶氏酵母与蛋白质分泌有关的TSR1基因编码区部分缺失的DNA片段转化一株解脂耶氏酵母,通过体内同源重组,部分缺失的外源tsr1片段取代了酵母染色体上的正常的TSR1基因,从而获得tsr1的转化子。Southern杂交结果表明,用该法成功地构建了tsr1突变体,这为进一步研究解脂耶氏酵母TSR1基因的功能奠定了基础。  相似文献   

2.
【目的】脂肽(Lipopeptide,LP)是微生物合成的一类重要的生物表面活性剂,不仅影响细菌的生物学功能,还对多种植物和人类病原菌具有广谱的拮抗作用。然而至今未见绿针假单胞菌(Pseudomonas chlororaphis)中脂肽产物的报道。【方法】通过生物信息学手段预测绿针假单胞菌HT66中脂肽的氨基酸组成及顺序,构建脂肽合成基因缺失突变株HT66Δclp,根据突变株缺失代谢产物的UPLC/QTOF-MS信息验证预测结果,并研究了脂肽对该菌株的生长、吩嗪-1-甲酰胺(PCN)合成、生物膜形成和群集运动性的影响。【结果】预测菌株HT66的脂肽氨基酸顺序为L-Leu–D-Glu–D-allo-Thr–D-Val–L-Leu–D-Ser–L-Leu–D-Ser–L-Ile,通过比对野生型和突变株代谢产物的质谱信息确定该产物为黏液菌素(Viscosin);脂肽合成基因缺失后,菌株HT66的生长无明显变化,但其PCN合成、生物膜形成和群集运动性均有不同程度地下降。【结论】菌株HT66的脂肽产物为黏液菌素,对菌株的代谢、生物膜形成和运动性等生物学功能具有重要的调控作用。研究报道了绿针假单胞菌中一种脂肽分子的结构与功能,为研究其合成和调控机制及开发和应用奠定了基础。  相似文献   

3.
白玫  吴鸿 《植物学通报》2009,44(6):735-741
三酰甘油(TAG)是真核生物中能量贮存的最主要形式。植物中贮存的三酰甘油是食用油类和工业用油的主要来源。TAG1基因的表达产物甘油二酯酰基转移酶(DGAT)能够调控三酰甘油的合成。as11是TAG1基因突变获得的脂类代谢相关突变体。该文概述了拟南芥(Arabidopsis thaliana)突变体as11的生物学特征及TAG1基因对脂类合成调控的最新进展。  相似文献   

4.
生物医学证据表明,过量的油脂特别是脂肪酸(fatty acids,FA)在非脂肪组织累积会引起脂代谢障碍,引起细胞功能紊乱或坏死。脂肪酸延长酶家族参与脂肪酸代谢,具有真核生物的高度保守性,且与膜脂的代谢密切相关。但脂肪酸延长酶与细胞脂毒效应的关系并不清楚。该文利用模式生物酿酒酵母在脂类代谢研究中性状易于表征、遗传操作便利的优势,通过对比脂肪酸延长酶缺陷型elo1Δ、elo2Δ和elo3Δ与野生型酵母(wild-type,WT)对不同脂肪酸胁迫的响应,发现极长链脂肪酸延长酶基因ELO2和ELO3缺陷后对油酸(oleic acid,OLA)高度敏感;细胞脂滴及中性脂质的代谢对维持细胞脂类平衡起关键作用。研究结果显示,长链脂肪酸的合成缺陷或油酸处理均促进细胞脂滴的形成,同时显著提高细胞中性油脂(TAG)和甾醇酯(SE)合成;采用气相色谱–质谱联用技术分析脂肪酸组成,结果显示,ELO3缺陷,C_(26)脂肪酸基本检测不到,而C_(20)与C_(22)脂肪酸会累积;ELO2缺失后,C_(26)脂肪酸的含量也明显降低。而油酸的处理会增加BY4741胞内总的极长链脂肪酸的比例;elo2Δ和elo3Δ的不饱和脂肪酸与饱和脂肪酸的比例增大;相反,过表达脂肪酸延长酶基因,与野生型菌株相比能显著降低细胞油酸的含量。模式生物脂肪酸延长酶对细胞脂质代谢及油酸胁迫响应的研究,为医学脂代谢障碍及细胞脂毒效应研究提供了基础数据。  相似文献   

5.
组蛋白H3/H4的分子伴侣Asf1(anti-silencing factor 1),参与依赖DNA复制及不依赖DNA复制的核小体装配,同时参与转录调控、基因沉默以及DNA损伤修复等过程. 在不同生物中,Asf1具有功能的保守性和多样性.嗜热四膜虫ASF1(TTHERM_00442300)基因编码的蛋白质含有保守的N端结构域和酸性的C端结构域.N端结构域同源序列进化树分析表明,Asf1进化与物种进化一致.实时荧光定量PCR表明,ASF1在四膜虫营养生长、饥饿及有性生殖时期均有表达,且在有性生殖4~6 h转录水平达到最高.免疫荧光定位分析表明,HA-Asf1在营养生长时期以及有性生长时期定位于功能大核和小核中,而在凋亡的大核中信号消失.过表达ASF1导致大核及小核变大,抑制细胞增殖.敲减ASF1后会导致大核形态异常,小核缺失.结果表明,ASF1表达对细胞核的形态和结构维持发挥重要的调控作用.  相似文献   

6.
为了研究毕赤酵母中转录因子Mxrlp在毕赤酵母代谢调控中所起的作用,构建一株以南极假丝酵母脂肪酶B基因(CALB)作为报告基因,MXR1基因完全缺失的毕赤酵母基因工程菌株.将重组质粒pPIC9K-CALB转化毕赤酵母GS115,利用三丁酸甘油酯平板筛选得到分泌表达CALB的重组茵GS115/pPIC9K-CALB.通过重叠延伸PCR方法获得一段中间含有博来霉素抗性基因sh ble,两翼大约各有1 200 bp与毕赤酵母MXR1基因上下游同源的基因片段,将此片段用氯化锂法转化毕赤酵母细胞GS1 15/pPIC9 K-CALB后,利用博来霉素抗性及CALB酶活力丧失双重筛选的方法得到一株MXR1基因完全缺失的毕赤酵母基因工程菌株.该菌株在以甲醇为唯一碳源的培养基中不生长,在以乙醇、葡萄糖或者甘油为唯一碳源的培养基中生长缓慢.结果表明转录Mxrlp因子在毕赤酵母中的多条代谢途径中起着关键性的作用,主要涉及甲醇、乙醇、甘油和葡萄糖等代谢途径.  相似文献   

7.
【目的】鉴定巴斯德毕赤酵母ORM1基因;研究ORM1基因缺失对毕赤酵母生长、内质网压力应答、细胞钙稳态调节和活性氧水平等方面的影响。【方法】利用生物信息学软件对毕赤酵母Orm1蛋白进行序列比对和分析;利用PCR介导的同源重组法构建orm1Δ缺失菌株,将回补质粒p IB1-ORM1转入orm1Δ菌株构建回补菌株;研究ORM1基因缺失对毕赤酵母生长的影响;以Fluo-3 AM染色法测定胞质钙含量;以DCFH-DA染色法分析胞内活性氧水平;以实时荧光定量PCR技术研究ORM1基因缺失对毕赤酵母非折叠蛋白应答、钙稳态和抗氧化系统基因表达的影响;使用试剂盒分析毕赤酵母抗氧化系统过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性及谷胱甘肽(GSH)的含量。【结果】在毕赤酵母基因组数据库中比对出酿酒酵母Orm1和Orm2的同源蛋白,并将该蛋白编码基因命名为ORM1;毕赤酵母ORM1基因缺失导致细胞生长受到明显抑制,对衣霉素引起的内质网压力敏感性增强,非折叠蛋白应答激活,细胞钙稳态紊乱,活性氧积累,抗氧化系统激活。【结论】由于非折叠蛋白应答、钙稳态调节、活性氧积累等均与内质网功能息息相关,因此,巴斯德毕赤酵母ORM1基因编码的Orm1蛋白在细胞生长及内质网正常功能的维持过程中发挥重要作用。  相似文献   

8.
糖类与脂肪是人体主要的能量物质,其代谢过程在人体发挥着重要作用,一旦它们代谢出现偏差,可能会引起多种疾病。miRNA是一类22~25个核苷酸长度的内源性非编码RNA,它与靶mRNA的3′UTR互补配对,可通过降解mRNA或抑制靶mRNA翻译调控基因表达。研究发现,miRNA参与了糖和脂的代谢过程,并作为调控糖类和脂类代谢内稳态的重要调节因子在糖类以及脂肪酸和固醇的代谢过程中发挥了重要作用。本文旨在探讨miRNA与糖脂代谢的关系。  相似文献   

9.
长链非编码RNA (long noncoding RNAs, lncRNA)是一类长度大于200个核苷酸的非编码RNA,调控转录和转录后的基因表达,在各种生命活动过程中都起着重要的作用。破骨细胞是一种组织特异性的多核巨噬细胞,受多种信号因子和信号通路的调控,作为人体唯一的骨吸收细胞对维持骨代谢平衡具有非常重要的作用,当平衡被打破时则会引起一系列骨代谢疾病,如骨质疏松症、骨硬化症等。近些年研究发现,lncRNAs在破骨细胞分化过程中呈现差异化表达,且在其增殖、分化、凋亡过程中具有多重调控作用。该文就lncRNAs调控破骨细胞分化和功能的机制进行归纳总结,为破骨细胞功能异常所造成的骨代谢疾病提供新的研究靶点和诊疗思路。  相似文献   

10.
拟南芥TAG1 基因对脂类合成调控作用的研究进展   总被引:1,自引:0,他引:1  
白玫  吴鸿 《植物学报》2009,44(6):735-741
三酰甘油(TAG)是真核生物中能量贮存的最主要形式。植物中贮存的三酰甘油是食用油类和工业用油的主要来源。TAG1基因的表达产物甘油二酯酰基转移酶(DGAT)能够调控三酰甘油的合成。as11是TAG1基因突变获得的脂类代谢相关突变体。该文概述了拟南芥(Arabidopsis thaliana)突变体as11的生物学特征及TAG1基因对脂类合成调控的最新进展。  相似文献   

11.
12.
13.
The Saccharomyces cerevisiae PAH1-encoded Mg2+-dependent phosphatidate phosphatase (PAP1, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol and Pi. This enzyme plays a major role in the synthesis of triacylglycerols and phospholipids in S. cerevisiae. PAP1 contains the DXDX(T/V) catalytic motif (DIDGT at residues 398-402) that is shared by the mammalian fat-regulating protein lipin 1 and the superfamily of haloacid dehalogenase-like proteins. The yeast enzyme also contains a conserved glycine residue (Gly80) that is essential for the fat-regulating function of lipin 1 in a mouse model. In this study, we examined the roles of the putative catalytic motif and the conserved glycine for PAP1 activity by a mutational analysis. The PAP1 activities of the D398E and D400E mutant enzymes were reduced by >99.9%, and the activity of the G80R mutant enzyme was reduced by 98%. The mutant PAH1 alleles whose products lacked PAP1 activity were nonfunctional in vivo and failed to complement the pah1Delta mutant phenotypes of temperature sensitivity, respiratory deficiency, nuclear/endoplasmic reticulum membrane expansion, derepression of INO1 expression, and alterations in lipid composition. These results demonstrated that the PAP1 activity of the PAH1 gene product is essential for its roles in lipid metabolism and cell physiology.  相似文献   

14.
Cellular senescence, a state of growth arrest, is involved in various age‐related diseases. We previously found that carnitine palmitoyltransferase 1C (CPT1C) is a key regulator of cancer cell proliferation and senescence, but it is unclear whether CPT1C plays a similar role in normal cells. Therefore, this study aimed to investigate the role of CPT1C in cellular proliferation and senescence of human embryonic lung MRC‐5 fibroblasts and the involved mechanisms. The results showed that CPT1C could reverse the cellular senescence of MRC‐5 fibroblasts, as evidenced by reduced senescence‐associated β‐galactosidase activity, downregulated messenger RNA (mRNA) expression of senescence‐associated secretory phenotype factors, and enhanced bromodeoxyuridine incorporation. Lipidomics analysis further revealed that CPT1C gain‐of‐function reduced lipid accumulation and reversed abnormal metabolic reprogramming of lipids in late MRC‐5 cells. Oil Red O staining and Nile red fluorescence also indicated significant reduction of lipid accumulation after CPT1C gain‐of‐function. Consequently, CPT1C gain‐of‐function significantly reversed mitochondrial dysfunction, as evaluated by increased adenosine triphosphate synthesis and mitochondrial transmembrane potential, decreased radical oxygen species, upregulated respiratory capacity and mRNA expression of genes related to mitochondrial function. In summary, CPT1C plays a vital role in MRC‐5 cellular proliferation and can reverse MRC‐5 cellular senescence through the regulation of lipid metabolism and mitochondrial function, which supports the role of CPT1C as a novel target for intervention into cellular proliferation and senescence and suggests CPT1C as a new strategy for antiaging.  相似文献   

15.
AX Santos  H Riezman 《FEBS letters》2012,586(18):2858-2867
Lipids are essential eukaryotic cellular constituents. Lipid metabolism has a strong impact on cell physiology, and despite good progress in this area, many important basic questions remain unanswered concerning the functional diversity of lipid species and on the mechanisms that cells employ to sense and adjust their lipid composition. Combining convenient experimental tractability, a large degree of conservation of metabolic pathways with other eukaryotes and the relative simplicity of its genome, proteome and lipidome, yeast represents the most advantageous model organism for studying lipid homeostasis and function. In this review we will focus on the importance of yeast as a model organism and some of the innovative advantages for the lipid research field.  相似文献   

16.
Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway.  相似文献   

17.
18.
Neutral lipids in the form of triacylglycerol (TAG) have emerged as critical regulators of cellular energy balance, lipid homeostasis, growth, development and stress response in organisms ranging from plants to yeast. Although TAGs are mostly recognized as the main storage component in cytoplasmic lipid droplets (LDs), TAG-rich LDs with similar structural and functional characteristics to those found in the cytoplasm also exist in chloroplasts of microalgae and higher plants. Chloroplasts contain up to 70% of total lipids in photosynthetic cells, yet how organisms maintain chloroplast lipid homeostasis remains an under-investigated area of research. Here we summarize the current state of knowledge about the metabolism of TAG and its function in chloroplasts, with a focus on the enzymes catalyzing the final steps of TAG assembly and the role of TAG synthesis in protection against lipotoxicity. We also discuss emerging data regarding connections between cytoplasmic and chloroplast TAG metabolism and the role of autophagy in the degradation of chloroplast storage lipids.  相似文献   

19.
Phosphatidate phosphatase (PAP) enzymes catalyze the dephosphorylation of phosphatidate, yielding diacylglycerol and inorganic phosphate. In eukaryotic cells, PAP activity has a central role in the synthesis of phospholipids and triacylglycerol through its product diacylglycerol, and it also generates and/or degrades lipid-signaling molecules that are related to phosphatidate. There are two types of PAP enzyme, Mg(2+) dependent (PAP1) and Mg(2+) independent (PAP2), but only genes encoding PAP2 enzymes had been identified until recently, when a gene (PAH1) encoding a PAP1 enzyme was found in Saccharomyces cerevisiae. This discovery has revealed a molecular function of the mammalian protein lipin, a deficiency of which causes lipodystrophy in mice. With molecular information now available for both types of PAP, the specific roles of these enzymes in lipid metabolism are being clarified.  相似文献   

20.
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate.Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号