首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
L-阿拉伯糖异构酶(L-arabinose isomerase,L-AI)是一种可以催化D-半乳糖为D-塔格糖的胞内异构化酶。随着塔格糖在食品工业中越来越广泛的应用,能够将半乳糖转化为塔格糖的食品级微生物以及食品级来源的L-AI受到更大的关注。文中从各种酸奶制品、泡菜及其他一些食品中采集不同的样品,筛选出1株具有L-AI酶活的食品级菌株,经过生理生化鉴定以及16S rDNA序列测定,确定该菌株为戊糖片球菌,命名为Pediococcus pentosaceus PC-5。以该菌基因组为模板,克隆L-AI基因,并在大肠杆菌BL21成功地异源表达。表达产物经粗提取后,在40℃下加入Mn2+,使D-半乳糖转化为D-塔格糖的转化率为33%。  相似文献   

2.
程丽芳  沐万孟  张涛  江波 《微生物学通报》2008,35(10):1626-1632
L-阿拉伯糖异构酶(L-AI)能分别催化L-阿拉伯糖和D-半乳糖异构为L-核酮糖和D-塔格糖,它是目前生物法生产新型功能性因子D-塔格糖最为有效的酶.近年来,L-AI的结构已被揭晓,其基因已获得克隆、测序和过量表达,经过蛋白质工程改造的L-AI将是未来工业化生产D-塔格糖的主要用酶.本文综述了近年来国外对L-AI的结构与功能、催化机理、酶学性质及应用于D-塔格糖生产方面的研究状况,并展望了其发展前景.  相似文献   

3.
L-阿拉伯糖异构酶是生物法生产新型功能性因子D-塔格糖最为有效的酶。本文获得了一种新型耐热L-阿拉伯糖异构酶的编码基因araA,来源于Bacillus stearothermophilis IAM 11001,经NCBI Blastn分析,与GenBank中Thermus sp. IM6501 araA序列的同源性为95%,并将该新基因提交到GenBank,获得登陆号:EU394214。以pET-22b(+)为载体质粒,E. coli BL21(DE3)为宿主细胞,构建了基因重组菌,IPTG可诱导目的蛋白的过量表达;经亲和层析纯化的重组蛋白样品进行SDS-PAGE电泳分析,约在59 kDa处出现显著的特征蛋白条带;同时对重组L-AI的活性进行了初步研究,全细胞反应24小时D-塔格糖的转化率为39.8%。  相似文献   

4.
The araA gene encoding L-arabinose isomerase from Bacillus stearothermophilus US100 strain was cloned, sequenced and over-expressed in E. coli. This gene encodes a 496-amino acid protein with a calculated molecular weight of 56.161 kDa. Its amino acid sequence displays the highest identity with L-AI from Thermus sp. IM6501 (98%) and that of Geobacillus stearothermophilus T6 (97%). According to SDS-PAGE analysis, under reducing and non-reducing conditions, the recombinant enzyme has an apparent molecular weight of nearly 225 kDa, composed of four identical 56-kDa subunits. The L-AI US100 was optimally active at pH 7.5 and 80 degrees C. It was distinguishable by its behavior towards divalent ions. Indeed, the L-AI US100 activity and thermostability were totally independent for metallic ions until 65 degrees C. At temperatures above 65 degrees C, the enzyme was also independent for metallic ions for its activity but its thermostability was obviously improved in presence of only 0.2 mM Co2+ and 1 mM Mn2+. The V(max) values were calculated to be 41.3 U/mg for L-arabinose and 8.9 U/mg for D-galactose. Their catalytic efficiencies (k(cat)/K(m)) for l-arabinose and D-galactose were, respectively, 71.4 and 8.46 mM(-1) min(-1). L-AI US100 converted the d-galactose into D-tagatose with a high conversion rate of 48% after 7 h at 70 degrees C.  相似文献   

5.
6.
Folate is a B-group vitamin that cannot be synthesized by humans and must be obtained exogenously. Although some species of lactic acid bacteria (LAB) can produce folates, little is known about the production of this vitamin by yogurt starter cultures. Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were isolated from artisanal Argentinean yogurts and were grown in folate-free culture medium (FACM) and nonfat milk after which intracellular and extracellular folate production were evaluated. From the initial 92 isolated LAB strains, 4 L. delbrueckii subsp. bulgaricus and 32 S. thermophilus were able to grow in the absence of folate. Lactobacillus delbrueckii subsp. bulgaricus CRL 863 and S.?thermophilus CRL 415 and CRL 803 produced the highest extracellular folate levels (from 22.3 to 135?μg/L) in FACM. In nonfat milk, these strains were able to increase the initial folate concentrations by almost 190%. This is the first report where native strains of L. delbrueckii subsp. bulgaricus were shown to produce natural folate. The LAB strains identified in this study could be used in developing novel fermented products bio-enriched in natural folates that could in turn be used as an alternative to fortification with the controversial synthetic chemical folic acid.  相似文献   

7.
8.
AIMS: Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. METHODS AND RESULTS: A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. CONCLUSIONS: The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.  相似文献   

9.
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.  相似文献   

10.
An L-arabinose isomerase mutant enzyme from Geobacillus thermodenitrificans was used to catalyze the isomerization of D-galactose to D-tagatose with boric acid. Maximum production of D-tagatose occurred at pH 8.5-9.0, 60 degrees C, and 0.4 molar ratio of boric acid to D-galactose, and the production increased with increasing enzyme concentration. Under the optimum conditions, the enzyme (10.8 units/mL) converted 300 g/L D-galactose to 230 g/L D-tagatose for 20 h with a yield of 77% (w/w); the production and conversion yield with boric acid were 1.5-fold and 24% higher than without boric acid, respectively. In 24 h, the enzyme produced 370 g/L D-tagatose from 500 g/L D-galactose with boric acid, corresponding to a conversion yield of 74% (w/w) and a production rate of 15.4 g/L.h. The production and yield of D-tagatose obtained in this study are unprecedented.  相似文献   

11.
ABSTRACT: BACKGROUND: D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a beta-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. RESULTS: In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52[DEGREE SIGN]C; however, it exhibited over 60% of maximum activity at 30[DEGREE SIGN]C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50[DEGREE SIGN]C. In this study, a recombinant Pichia pastoris yeast strain secreting beta-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting beta-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the complete utilization of D-glucose and a 30% conversion of D-galactose to D-tagatose. CONCLUSIONS: The method developed for the simultaneous hydrolysis of lactose, utilization of D-glucose and isomerization of D-galactose using a P. pastoris strain secreting beta-D-galactosidase and recombinant L-arabinose isomerase seems to offer an interesting alternative for the production of D-tagatose from lactose-containing feedstock.  相似文献   

12.
酸奶发酵过程中抗生素对酸度的影响   总被引:1,自引:0,他引:1  
建立7种抗生素对发酵产酸奶的酸度影响。用保加利亚乳杆菌和嗜热链球菌按1∶1菌浓度比来发酵牛奶,NaOH滴定其酸度。结果表明:头孢噻呋钠、青霉素G钾盐、硫酸链霉素、盐酸土霉素、硫氰酸红霉素对发酵生产酸奶的临界质量浓度点分别为0.012 5、0.25、30、0.125和2.5 mg/L;硫酸庆大霉素和磺胺嘧啶的临界质量浓度点高于200 mg/L;抗生素的浓度低于临界浓度点,酸奶的酸度在80°T到100°T之间。实验证明:在酸奶发酵过程中加入抗生素对酸奶酸度的变化趋势稳定,利用酸度来判断抗生素的浓度具有可操作性。  相似文献   

13.
The araA gene encoding an L-arabinose isomerase (L-AI) from the acido-thermophilic bacterium Acidothermus cellulolytics ATCC 43068 was cloned and overexpressed in Escherichia coli. The open reading frame of the L-AI consisted of 1,503 nucleotides encoding 501 amino acid residues. The recombinant L-AI was purified to homogeneity by heat treatment, ion-exchange chromatography, and gel filtration. The molecular mass of the enzyme was estimated to be approximately 55 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme was optimally active at 75°C and pH 7.5. It required divalent metal ions, either Mn2+ or Co2+, for both enzymatic activity and thermostability improvement at higher temperatures. The enzyme showed relatively high activity and stability at acidic pH. It exhibited over 90% of its maximal activity at pH 6.0 and retained 80% of activity after 12 h incubation at pH 6.0. Catalytic property study showed that the enzyme had an interesting catalytic efficiency. Its apparent K m, V max, and catalytic efficiency (k cat/K m) for D-galactose was 28.9 mM, 4.9 U/mg, and 9.3 mM−1 min−1, respectively. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield over 50% after 12 h under optimal conditions, suggesting its potential in D-tagatose production.  相似文献   

14.
Bulgarian yogurts were manufactured and fortified with 8, 15 and 27 mg of iron kg(-1) of yogurt. The growth and acidifying activity of the starter culture bacteria Streptococcus thermophilus 13a and Lactobacillus delbrueckii subsp. bulgaricus 2-11 were monitored during milk fermentation and over 15 days of yogurt storage at 4 degrees C. Fortifying milk with iron did not affect significantly the growth of the starter culture during manufacture and storage of yogurt. Counts of yogurt bacteria at the end of fermentation of iron-fortified milks were between 2.1 x 10(10) and 4.6 x 10(10) CFU ml(-1), which were not significantly different from numbers in unfortified yogurts. In all batches of yogurt, the viable cell counts of S. thermophilus 13a were approximately three times higher than those of L. delbrueckii subsp. bulgaricus 2-11. Greater decrease in viable cell count over 15 days of storage was observed for S. thermophilus 13a compared to L. delbrueckii subsp. bulgaricus 2-11. Intensive accumulation of lactic acid was observed during incubation of milk and all batches reached pH 4.5 +/- 0.1 after 3.0 h. At the end of fermentation process, lactic acid concentrations in iron-fortified yogurts were between 6.9 +/- 0.4 and 7.3 +/- 0.5 g l(-1). The acidifying activity of starter culture bacteria in the control and iron-fortified milks was similar. There was no increase in oxidized, metallic and bitter off-flavors in iron-fortified yogurts compared to the control. Iron-fortified yogurts did not differ significantly in their sensorial, chemical and microbiological characteristics with unfortified yogurt, suggesting that yogurt is a suitable vehicle for iron fortification and that the ferrous lactate is an appropriate iron source for yogurt fortification.  相似文献   

15.
One of the traditional ways of preparation of yogurt starter in Bulgaria is placing a branch of a particular plant species into boiled sheep's milk maintained at about 45°C, which is further incubated until a dense coagulum is obtained. To investigate the possible origin of the yogurt starter bacteria, Lactobacillus delbrueckii ssp. bulgaricus ( L. bulgaricus ) and Streptococcus thermophilus ( S. thermophilus ), the traditional way of yogurt-starter preparation was followed. Hundreds of plant samples were collected from four regions in Bulgaria and incubated in sterile skim milk. The two target bacteria at low frequencies from the plant samples collected were successfully isolated. Phenotypic and genotypic characteristics of these bacterial isolates revealed that they were identified as L. bulgaricus and S. thermophilus . Twenty isolates of L. bulgaricus and S. thermophilus , respectively, were selected from the isolated strains and further characterized with regard to their performance in yogurt production. Organoleptic and physical properties of yogurt prepared using the isolated strains from plants were not significantly different from those prepared using commercial yogurt-starter strains.
It was therefore suggested that L. bulgaricus and S. thermophilus strains widely used for commercial yogurt production could have originated from plants in Bulgaria. To our knowledge, this is the first report on the isolation and characterization of L. bulgaricus and S. thermophilus strains from plants.  相似文献   

16.
The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.  相似文献   

17.
L-Arabinose isomerase isolated from Geobacillus stearothermophilus (GSAI) was modified to improve its substrate specificity for D-galactose for the production of D-tagatose, a potential reduced-energy sweetener. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. Analysis of the substrate specificity of H18T showed a 45.4% improvement for D-galactose. Replacing histidine with threonine at residue 18 resulted in approximately 2.7-fold and 1.8-fold higher substrate binding and catalytic efficiency, respectively, for D-galactose. Further enhancement of the specific activity and catalytic efficiency of H18T for D-galactose by up to 2.7-fold and 4.3-fold, respectively, was achieved by adding borate during L-arabinose isomerase catalysis. Moreover, H18T showed thermostability and no destabilization was detected, which is promising for the industrial production of D-tagatose.  相似文献   

18.
应用PCR从大肠杆菌基因组中扩增L-阿拉伯糖异构酶基因,用EcoR I和Not I双酶切将其克隆进P.pastoris表达载体,获得重组表达载体pGAP9K-L-ai。通过电转法将pGAP9K—L-ai转化毕赤酵母GS115,筛选高G418抗性和高表达L-阿拉伯糖异构酶的重组工程菌。用葡萄糖作为碳源在摇瓶中发酵48 h,表达重组L-ai 53 mg/L。用毕赤酵母的GAP启动子调控表达的重组L-ai具有异构D-半乳糖生成D-塔格糖的生物学活性。  相似文献   

19.
Unlike Streptococcus salivarius subspecies thermophilus, Streptococcus salivarius subspecies salivarius fails to grow symbiotically in milk in the presence of Lacto-bacillus bulgaricus , does not produce large quantities of the flavour volatiles, acetal-dehyde or diacetyl and is unable to stimulate growth of Lact. bulgaricus by producing formate. Although Strep, salivarius subspecies salivarius and thermophilus have similar DNA base composition and belong in the same DNA homology group, the former is unsuitable for milk fermentations such as yoghurt because fermentation of milk using this organism results in products with poor flavour, aroma and texture.  相似文献   

20.
AIMS: Skim milk agar was developed to investigate extracellular cell-bound proteinase in yogurt cultures, Streptococcus thermophilus and Lactobacillus bulgaricus. METHODS AND RESULTS: The Lact. bulgaricus cultures produced more extracellular cell-bound proteinase than did Strep. thermophilus cultures. Strong positive correlations between the size of the exopolysaccharide (EPS) layer and extracellular cell-bound proteinase were found for both Streptococcus and Lactobacillus cultures. CONCLUSION: Strong positive linear relationships existed between the EPS size and colony size and the diameter of clear zone and colony size for Streptococcus cultures, whereas weak positive linear relationships were observed for Lactobacillus cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: These data are useful to validate the relationship between extracellular proteinase and the EPS size of LAB. Also, a convenient medium to detect the presence of extracellular cell-bound proteinase of LAB is valuable for dairy industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号