首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cloning, purification and biochemical characterization of metallic-ions independent and thermoactive l-arabinose isomerase from the Bacillus stearothermophilus US100 strain
Authors:Rhimi Moez  Bejar Samir
Institution:Laboratoire d'Enzymes et de Métabolites des Procaryotes, Centre de Biotechnologie de Sfax BP K 3038 Sfax, Tunisie.
Abstract:The araA gene encoding L-arabinose isomerase from Bacillus stearothermophilus US100 strain was cloned, sequenced and over-expressed in E. coli. This gene encodes a 496-amino acid protein with a calculated molecular weight of 56.161 kDa. Its amino acid sequence displays the highest identity with L-AI from Thermus sp. IM6501 (98%) and that of Geobacillus stearothermophilus T6 (97%). According to SDS-PAGE analysis, under reducing and non-reducing conditions, the recombinant enzyme has an apparent molecular weight of nearly 225 kDa, composed of four identical 56-kDa subunits. The L-AI US100 was optimally active at pH 7.5 and 80 degrees C. It was distinguishable by its behavior towards divalent ions. Indeed, the L-AI US100 activity and thermostability were totally independent for metallic ions until 65 degrees C. At temperatures above 65 degrees C, the enzyme was also independent for metallic ions for its activity but its thermostability was obviously improved in presence of only 0.2 mM Co2+ and 1 mM Mn2+. The V(max) values were calculated to be 41.3 U/mg for L-arabinose and 8.9 U/mg for D-galactose. Their catalytic efficiencies (k(cat)/K(m)) for l-arabinose and D-galactose were, respectively, 71.4 and 8.46 mM(-1) min(-1). L-AI US100 converted the d-galactose into D-tagatose with a high conversion rate of 48% after 7 h at 70 degrees C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号