首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
利用3个推广品种(莱州953、山农辐63、陕7859)分别与原产地不同的抗白粉病的6份粗山羊草[Aegilops tauschii(Coss.)Schmal.]杂交,得到63个无胚乳的种子,将56枚幼胚接种到N6 0.5mg/L IBA 0.2 mg/L NAA的培养基上进行褓姆培养,得到37个植株。其中莱州953与粗山羊草的杂交结实率和成苗率较高,分别平均为8.58%和4.82%。粗山羊草对白粉病的抗性基因在不同的杂交组合中受到不同程度的改变或抑制。以莱州953为父本,分别与不同组合的杂种F_1回交,大多数组合均得到回交种子,回交结实率平均为1.70%;以莱州953作母本,与莱州953/Y225 F _1回交得到2粒种子,说明普通小麦与粗山羊草的杂种F_1也能产生少量有授精能力的花粉。以山农辐63为父本与山农辐63/Y219 F_1回交亦得到回交种子。通过对普通小麦与粗山羊草6个杂交组合的杂种F_1PMCMI染色体构型的分析,一般多出现14个左右单价体和一定频率的多价体,并观察到可能为A、B组染色体形成的异形二价体;粗山羊草的D组染色体和普通小麦的D组染色体联会正常,可发生自由重组,从而为将粗山羊草的有益基因导入普通小麦提供了细胞学依据。  相似文献   

2.
34个小麦品种(系)与黑麦进行了杂交,结果表明:亲和性在供试材料间存在明显差异,其中12个小麦品种表现了与中国春相似的亲和性;对34个小麦/黑麦属间杂种(F_1)的回交结实率和开放授粉条件下的自交结实率的统计表明,杂种育性普遍较差,但不同组合间存在明显不同,其回交与自交结实率的变异幅度分别为0—4.50%和0—3.087粒/穗;小麦与黑麦属间杂种(F_1)育性与杂交亲和性间存在明显相关,回交和自交结实率以及能够回交和自交结实组合的出现频率均随亲和性的增加而表现增加的趋势;在小麦品种演化过程中,亲和性与杂种育性均表现降低的趋势;小麦/黑麦属间杂种(F_1)PMC MI染色体配对水平普遍较低,平均交叉结仅为0.359,但组合间存在一定差异,变幅为0—1.3;平均99.936%的杂种(F_1)花粉表现败育,仅有0.064%的杂种(F_1)花粉能被KI—I_2正常染色,杂种(F_1)染色体配对水平与正常染色花粉频率、正常染色花粉频率与自交结实率间存在一定程度的相关性,相关系数分别为0.209和0.205。  相似文献   

3.
“缺体回交法”选育普通小麦—山羊草异代换系的研究   总被引:3,自引:2,他引:1  
利用从兰单体自交分离得到的5个自花结实的4D缺体小麦(映72180、块天选15等)作母本与11个山羊草(Ae.speltoides, Ae.sharonensis等)杂交,再以4D缺体为轮回亲本对杂种进行回交,借助于幼胚培养技术,获得了缺天选15×拟斯卑尔脱山羊草二体异代换系,缺72180×沙融山羊草单体异代换系。代换系生长发育良好,育性基本正常,表明山羊草的4S染色体能够补偿小麦缺失的4D染色体的功能。证明利用“缺体回交法”选育普通小麦—山羊草异代换系是有效的和可行的。  相似文献   

4.
分别以山羊草属4个不同的种为母本,以普通小麦为父本杂交,将获得的杂种再进行回交和自交。结果表明,不同种与普通小麦的可交配性存在较大差异,在人工多次授粉并有激素处理的条件下,粗山羊草与普通小麦的杂交结实率最高,2个基因型Ae42和Y92的杂交结实率分别为46.49%和22.58%;其次为卵穗山羊草,2个基因型Ae23和Y100的杂交结实率分别为12.11%和14.76%;柱穗山羊草位列第3,2个基因型Ae7和Y145的杂交结实率分别为2.23%和8.50%;拟斯卑尔脱山羊草最低,基因型Ae48的杂交结实率只有0.19%。不同种的杂种胚产生愈伤组织率不同,柱穗山羊草/小麦表现较高的水平,卵穗山羊草/小麦次之,粗山羊草/小麦第3,拟斯卑尔脱山羊草/小麦最低。卵穗山羊草/小麦的杂种幼胚直接成苗率最高,其次为粗山羊草/小麦,柱穗山羊草/小麦居第3位。山羊草与普通小麦杂种的育性较低,在自然状态下,只有卵穗山羊草/小麦能够自交结实,但自交结实率仅为0.044%,其他杂种自交不能结实。在人工多次授粉并激素处理条件下,用父、母本回交的结实率:卵穗山羊草/普通小麦组合分别为4.36%和3.71%,柱穗山羊草/普通小麦组合分别为0...  相似文献   

5.
异细胞质诱发硬粒小麦雌雄蕊败育的研究   总被引:1,自引:0,他引:1  
本文研究以具有D染色体组的偏凸山羊草(Aegliops ventricosa 2n=4x=28 DDM~vM~v)为母本,硬粒小麦(Triticum durum D_(213)和阿波罗[Appulo]2n=4x=28 AABB)为父本的异细胞质硬粒小麦杂种的结实性。采用(偏凸山羊草×D_(213))F_1(以下简称F_1)为母本,用硬粒小麦阿波罗置换回交,至(偏凸山羊草×D_(213))×阿波罗(以下简称BC_3)时,杂种植株雄蕊、雌蕊发生退化、败育和各种畸变,导致植株结实率下降到零。这种D染色体组异细胞质杂种经多代回交后不结实的现象是遗传育种工作中不可忽视的问题。  相似文献   

6.
普通小麦×栽培大麦杂种植株及其回交后代的产生和鉴定   总被引:1,自引:1,他引:0  
以小麦做母本与大麦杂交结实率仅0.77%。本试验通过幼胚培养获得了杂种植株,胚培出苗率37.14%。杂种植株在形态上与小麦相似,完全自交不育。F_1体细胞染色体数目为28,和预期结果一致。花粉母细胞减数分裂中期Ⅰ每个细胞平均二价体数为0.98,单价体数为26.04。用普通小麦做父本与杂种回交,回交结实率为0.26%。  相似文献   

7.
“缺体回交法”选育普通小麦异代换系方法的研究   总被引:12,自引:2,他引:10  
张学勇  李振声 《遗传学报》1989,16(6):420-429
利用从蓝单体自交分离得到的自花结实的4D缺体小麦(缺72180、缺天选15)作母本与3个不同的八倍体小偃麦(小偃784、小偃7631和小偃78829)杂交,再以缺体作为轮回亲本,从F_1或F_2开始连续回交1—2次,在回交中,缺体无论作父本或母本都得到了异代换系,并且发现:(1)在回交过程中,用缺体作母本比作父本更为有效;(2)F_1自交,在F_2群体中选择生长比较正常,染色体数比较少的植株回交,比F_1作母本直接回交效果更好。并对所得的异代换系的特征特性进行了初步的观察研究,发现中间偃麦草(Agropyron intermedium2n=42) 4E染色体(以下用4Ei表示)、长穗偃麦草(Agropyron clongatum 2n=70)的4E染色体(带蓝粒基因,以下用4Ee表示)和4F染色体(带毛叶基因,以下用4Fe表示)均能正常补偿小麦4D染色体。异代换系生长旺盛,育性正常。初步总结了缺体与八倍体小偃麦杂交,回交过程中异代换系的形成规律,证明了“缺体回交法”可以推广应用于八倍体小偃麦等人工合成的新物种,以选育普通小麦异代换系。  相似文献   

8.
栽培菊花与矶菊属间杂交亲和性及F1结实特性研究   总被引:4,自引:0,他引:4  
研究菊属栽培小菊‘奥运火炬’、‘意大利红’与亚菊属矶菊的杂交亲和性和结实性,以及杂种F1自交、回交和开放授粉的结实特性。结果表明:无论是以栽培菊花还是矶菊为母本,父本花粉在柱头上均能很好萌发,但结实率较低,‘奥运火炬’和矶菊杂交结实率为每花序3.72粒,‘意大利红’和矶菊正反交结实率分别为每花序1.20粒和0.87粒。回交组合(‘奥运火炬’×矶菊)F1ב奥运火炬’结实率为0~1.24粒;‘意大利红’与矶菊正反交F1无论是以‘意大利红’还是以矶菊为回交父本,结实率均较低,为0~1.37粒;‘早意大利红’和矶菊正反交F1自交不结实,‘奥运火炬’×矶菊杂种F1自交仅有少数单株有一定结实性,但在开放授粉条件下结实率均较高,最高达每花序47.5粒,说明F1雌配子发育良好,回交结实率低的原因可能在于远缘杂交障碍,而自交结实率低可能由自交不亲和机制决定。  相似文献   

9.
本研究从1979年开始,用抗病性较强的苏联球茎大麦(4x)为父本,普通小麦品种中国春(6x)为母本进行属间杂交,经离体培养杂种幼胚,获得了属间杂种(F_1)。杂种自交不育,用秋水仙素加倍亦不成功,而以中国春5B单体与之回交,获得回交一代(BC_1F_1)。杂种F_1形态为两亲的中间型,其花粉母细胞染色体数在24—30条之间。BC_1F_1代杂种的形态与F_1相似,染色体数在45—49条之间(其中大多数细胞终变期有20—21个二价体和3—7个单价体)。BC_1F_1代自交或回交均有部分结实。以后各代继续自交分离;于1985—1986年,分离出6个异源二体附加系(2n=22Ⅱ)和异源八倍体(2n=28Ⅱ)以及若干个与母本形态有明显差异的整倍体杂种后代(2n=21Ⅱ)。这些整倍体和非整倍体后代中,有2个附加系的蛋白质含量较高(22.30%和20.37%);在整倍体后代中有两个株系与其父本一样对小麦黄花叶病(WYMV)具有抗性,而其母本与浙江省当前推广的小麦品种均不抗病,说明球茎大麦抗黄花叶病基因可能已导入母本中国春小麦。  相似文献   

10.
(普通小麦×山羊草)F1用普通小麦回交的初步研究   总被引:4,自引:0,他引:4  
对(普通小麦×山羊草)F1用“中国春”(CS)进行回交的结实率与普通小麦×山羊草的结实率,F1二价体频率的高低与回交结实率无明显关系。山羊草的染色体组C可能促进回交结实。M0抑制回交结实。而和普通小麦同源的染色体组D无明显地促进回交结实作用。SvMcr染色体组既不促进也不抑制回交结实。  相似文献   

11.
12.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

13.
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases  相似文献   

14.
15.
16.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle.  相似文献   

17.
18.
Some closely related members of the monocotyledonous familiesAlismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae andAraceae with variable modes of pollination (insect- and wind-pollination) were studied in relation to the ultrastructure of pollenkitt and exine (amount, consistency and distribution of pollenkitt on the surface of pollen grains). The character syndromes of pollen cementing in entomophilous, anemophilous and intermediate (ambophilous or amphiphilous) monocotyledons are the same in principal as in dicotyledons. Comparing present with former results one can summarize: 1) The pollenkitt is always produced in the same manner by the anther tapetum in all angiosperm sub-classes. 2) The variable stickiness of entomophilous and anemophilous pollen always depends on the particular distribution and consistency of the pollenkitt, but not its amount on the pollen surface. 3) The mostly dry and powdery pollen of anemophilous plants always contains a variable amount of inactive pollenkitt in its exine cavities. 4) A step-by step change of the pollen cementing syndrome can be observed from entomophily towards anemophily. 5) From the omnipresence of pollenkitt in all wind-pollinated angiosperms studied one can conclude that the ancestors of anemophilous angiosperms probably have been zoophilous (i.e. entomophilous) throughout.
  相似文献   

19.
20.
正Dear Editor,Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative-sense,nonsegmented, single-stranded RNA virus belonging to the Paramyxoviridae family (Chen 2018). The virus was first reported in primary monkey kidney cells in 1954 (Hsiung1972), then it has been frequently discovered in various  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号