首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang Z  Ren Y  Zhang Y  Li J  Li H  Hu XH  Xu Q 《Biosensors & bioelectronics》2011,26(11):4337-4341
A novel biosensor is developed based on immobilization of proteins on nanoflake-like SnS? modified glass carbon electrode (GCE). With glucose oxidase (GOD) as a model, direct electrochemistry of the GOD/nanoflake-like SnS? is studied. The prepared SnS? has large surface area and can offer favorable microenvironment for facilitating the electron transfer between protein and electrode surface. The properties of GOD/SnS? are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV), respectively. The immobilized enzyme on nanoflake-like SnS? retains its native structure and bioactivity and exhibits a surface-controlled, reversible two-proton and two-electron transfer reaction with the apparent electron transfer rate constant (k(s)) of 3.68 s?1. The proposed biosensor shows fast amperometric response (8s) to glucose with a wide linear range from 2.5 × 10?? M to 1.1 × 10?3 M, a low detection limit of 1.0 × 10?? M at signal-to-noise of 3 and good sensitivity (7.6 ± 0.5 mA M?1 cm?2). The resulting biosensor has acceptable operational stability, good reproducibility and excellent selectivity and can be successfully applied in the reagentless glucose sensing at -0.45 V. It should be worthwhile noting that it opens a new avenue for fabricating excellent electrochemical biosensor.  相似文献   

2.
A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination–reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, ks, of 7.48 ± 3.52 s−1. Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25–8.0 mM (R = 0.9994, n = 14), with a determination limit of 0.076 mM.  相似文献   

3.
Human placenta regulates the transport of maternal molecules to the fetus. It is known that glucose transport occurs via glucose transporters (GLUTs) in the feto–placental unit. Data on the expression of GLUTs during implantation are very scarce. Moreover, the question of how the decidual leukocytes obtain the energy for their activation during implantation mechanism is still under investigation. We studied the distributions of GLUT1, GLUT3, and GLUT4 in tissue sections of first trimester pregnancies the human maternal–fetal interface. GLUT1 was present in apical microvilli of the syncytiotrophoblast, in cytotrophoblast, and in vascular patterns of the villous core, whereas GLUT3 was localized in cytotrophoblasts of placental villi and in some fetal endothelial cells. Moreover, the proliferating cells of the proximal cell columns were also immunopositive for GLUT1 and GLUT3. We did not observe any positive immunoreactivity for GLUT4 in placental and decidual tissues. Essentially, GLUT3 and also to some extent GLUT1 was present in maternal leukocytes and platelets. In conclusion, our results suggest that the glucose taken up via GLUT1 and GLUT3 from the maternal circulation might not only be needed for placental functions but also for successful implantation by trophoblast invasion, proliferation and also by having a role to support energy for maternal leukocytes.  相似文献   

4.
Could glucose be a proaging factor?   总被引:1,自引:0,他引:1  
There is an ever-increasing scientific interest for the interplay between cell's environment and the aging process. Although it is known that calorie restriction affects longevity, the exact molecular mechanisms through which nutrients influence various cell signalling/modulators of lifespan remain a largely unresolved issue. Among nutrients, glucose constitutes an evolutionarily stable, precious metabolic fuel, which is catabolized through glycolytic pathway providing energy in the form of ATP and consuming NAD. Accumulating evidence shows that among the important regulators of aging process are autophagy, sirtuin activity and oxidative stress. In light of recent work indicating that glucose availability decreases lifespan whilst impaired glucose metabolism extends life expectancy, the present article deals with the potential role of glucose in the aging process by regulating - directly through its metabolism or indirectly through insulin secretion - autophagy, sirtuins as well as other modulators of aging like oxidative stress and advanced glycation end-products (AGEs).  相似文献   

5.
We aimed to analyze the shape of the glucose, insulin, and C-peptide curves during a 3-h oral glucose tolerance test (OGTT). Another aim was defining an index of shape taking into account the whole OGTT pattern. Five-hundred ninety-two OGTT curves were analyzed, mainly from women with former gestational diabetes, with glycemic concentrations characterized by normal glucose tolerance (n = 411), impaired glucose metabolism (n = 134), and Type 2 diabetes (n = 47). Glucose curves were classified according to their shape (monophasic, biphasic, triphasic, and 4/5-phases), and the metabolic condition of the subjects, divided according to the glucose shape stratification, was analyzed. Indices of shape based on the discrete second-order derivative of the curve patterns were also defined. We found that the majority of the glucose curves were monophasic (n = 262). Complex shapes were less frequent but not rare (n = 37 for the 4/5-phases shape, i.e., three peaks). There was a tendency toward the amelioration of the metabolic condition for increasing complexity of the shape, as indicated by lower glucose concentrations, improved insulin sensitivity and β-cell function. The shape index computed on C-peptide, WHOSH(CP) (WHole-Ogtt-SHape-index-C-peptide), showed a progressive increase [monophasic: 0.93 ± 0.04 (dimensionless); 4/5-phases: 1.35 ± 0.14], and it showed properties typical of β-cell function indices. We also found that the type of glucose shape is often associated to similar insulin and C-peptide shape. In conclusion, OGTT curves can be characterized by high variability, and complex OGTT shape is associated with better glucose tolerance. WHOSH(CP) (WHole-Ogtt-SHape-index) may be a powerful index of β-cell function much simpler than model-based indices.  相似文献   

6.
Protein kinase Cζ (PKCζ) is a member of the PKC family, serving downstream of insulin receptor and phosphatidylinositol (PI) 3-kinase. Many evidences suggest that PKCζ plays a very important role in activating glucose transport response. Not only insulin but also glucose and exercise can activate PKCζ through diverse pathways. PKCζ activation and activity are impaired with insulin resistance in muscle and adipose tissues of type II diabetes individuals, but heightened in liver tissue, wherein it also increases lipid synthesis mediated by SREBP-1c (sterol-regulatory element-binding protein). Many studies have focused on linkage between PKCζ and GLUT4 translocation and activation. Exploring the molecular mechanisms and pathways by which PKCζ mediates glucose transport will highlight the insulin-signaling pathway. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 7, pp. 869–875. Co-first authors.  相似文献   

7.
Our objective was to determine whether defects underlying impaired fasting glucose (IFG) are maintained and additive when combined with impaired glucose tolerance (IGT) (representing a progressive form of prediabetes) or are distinct in IFG/IGT (reflecting a parallel form of prediabetes). Volunteers with IFG (n = 10), IFG/IGT (n = 14), or normal glucose tolerance (NGT; n = 15) were matched for demographics and anthropometry. Insulin secretion was assessed using the glucose step-up protocol and insulin action through the use of a two-stage hyperinsulinemic euglycemic clamp with infusion of [6,6-(2)H(2)]glucose. Modeling of insulin secretory parameters revealed similar basal (Phi(b)) but diminished dynamic (Phi(d)) components in both IFG and IFG/IGT (P = 0.05 vs. NGT for both). Basal glucose rate of appearance (R(a)) was higher in IFG compared with NGT (P < 0.01) and also, surprisingly, with IFG/IGT (P < 0.04). Moreover, glucose R(a) suppressed more during the low-dose insulin clamp in IFG (P < 0.01 vs. NGT, P = 0.08 vs. IFG/IGT). Insulin-stimulated glucose uptake [glucose rate of disappearance (R(d))] was similar in IFG, IFG/IGT, and NGT throughout the clamp. We conclude that nuances of beta-cell dysfunction observed in IFG were also noted in IFG/IGT. A trend for additional insulin secretory defects was observed in IFG/IGT, possibly suggesting progression in beta-cell failure in this group. In contrast, basal glucose R(a) and its suppressability with insulin were higher in IFG, but not IFG/IGT, compared with NGT. Together, these data indicate that IFG/IGT may be a distinct prediabetic syndrome rather than progression from IFG.  相似文献   

8.
Ahima RS 《Cell metabolism》2006,3(5):301-302
The hormone ghrelin regulates secretion of growth hormone and energy homeostasis. Sun et al (2006), in this issue of Cell Metabolism, demonstrate that ghrelin inhibits insulin secretion. Deletion of ghrelin increased basal insulin level, enhanced glucose-stimulated insulin secretion, and improved peripheral insulin sensitivity. These effects were not related to changes in food intake or weight, suggesting ghrelin has unique actions on key components of glucose homeostasis.  相似文献   

9.
A glucose-sensing mechanism has been described in Saccharomyces cerevisiae that regulates expression of glucose transporter genes. The sensor proteins Snf3 and Rgt2 are homologous to the transporters they regulate. Snf3 and Rgt2 are integral plasma membrane proteins with unique carboxy-terminal domains that are predicted to be localized in the cytoplasm. In a recent paper Ozcan and colleagues [Ozcan S, et al. EMBO J 1998; 17:2556-2773 (Ref. 1)] present evidence that the cytoplasmic domains of Snf3 and Rgt2 are required to transmit a glucose signal. They provide additional evidence to support their earlier assertion [Ozcan S, et al. Proc Natl Acad Sci USA 1996;93:12428-12432 (Ref. 2)] that glucose transport via Snf3 and Rgt2 is not involved in glucose sensing but, rather, that these proteins behave like glucose receptors. Other examples of transporter homologs with regulatory functions have recently been described in fungi as well [Madi L, et al. Genetics 1997; 146:499-508 (Ref. 3). and Didion T, et al. Mol Microbiol 1998;27:643-650 (Ref. 4)]. The identification of this class of nutrient sensors is an important step in elucidating the complex of regulatory mechanisms that leads to adaptation of fungi to different environments.  相似文献   

10.
Chai  Qian  Meng  Ziang  Lu  Dexue  Zhang  Ziying  Liu  Meili  Wu  Weihua 《Molecular and cellular biochemistry》2021,476(6):2479-2489
Molecular and Cellular Biochemistry - Cardiomyocyte death is an important pathogenic process in cardiac complications of diabetes. Diabetic patients often suffer glycemic variability. Pyroptosis is...  相似文献   

11.
12.
13.
14.
Yao Y  Li R  Ma Y  Wang X  Li C  Zhang X  Ma R  Ding Z  Liu L 《Biochimica et biophysica acta》2012,1823(4):920-929
α-Lipoic acid (LA) has been shown to improve the diabetic cardiac symptoms. However, the underlying mechanisms have not been elucidated precisely. We have reported recently that LA potentially protected neurons from substance-induced apoptosis. We hypothesized that LA could attenuate cardiac cells death induced by oxidative stress derived from high glucose. To test this possibility, we examined the effects of LA on d-glucose/glucose oxidase (DG/GO, 30mM/5mU)-induced injury in rat cardiomyoblast H9c2 cells. We observed that LA pretreatment significantly increased cell viability in DG/GO-challenged cells. LA pretreatment also attenuated DG/GO-induced apoptosis as evidenced by decreases in both nuclear condensation and loss of mitochondrial potential. In addition, LA activated ERK1/2 and moderately increased ROS production. Blockade of ERK1/2 activation by PD98059 completely abolished LA-induced protection against DG/GO challenge. Inhibition of ROS by N-acetylcysteine abrogated LA-induced ERK1/2 activation and cytoprotection. Furthermore, we observed that the ROS production induced by LA was significantly slower and milder than that by DG/GO. Our results suggest that pretreatment with LA moderately increased ROS production to induce a preconditioning-like effect by ERK1/2 activation thereby increased tolerance of H9c2 cells to DG/GO challenge.  相似文献   

15.
Recent studies revealed a surprising regenerative capacity of insulin-producing β cells in mice, suggesting that regenerative therapy for human diabetes could in principle be achieved. Physiologic β cell regeneration under stressed conditions relies on accelerated proliferation of surviving β cells, but the factors that trigger and control this response remain unclear. Using islet transplantation experiments, we show that β cell mass is controlled systemically rather than by local factors such as tissue damage. Chronic changes in β cell glucose metabolism, rather than blood glucose levels per se, are the main positive regulator of basal and compensatory β cell proliferation in vivo. Intracellularly, genetic and pharmacologic manipulations reveal that glucose induces β cell replication via metabolism by glucokinase, the first step of glycolysis, followed by closure of K(ATP) channels and membrane depolarization. Our data provide a molecular mechanism for homeostatic control of β cell mass by metabolic demand.  相似文献   

16.
Levin BE 《Cell metabolism》2007,6(4):252-254
Although hypothalamic glucose sensing is a long-established phenomenon, its physiological role remains unclear. New studies (Parton et al., 2007; Claret et al., 2007) disrupting glucose sensing in pro-opiomelanocortin neurons via differing methods have yielded disparate energy and glucose homeostasis phenotypes, suggesting that neuronal glucose sensing is not critical for these processes.  相似文献   

17.
1. Bacilysin, a peptide which yields l-alanine and l-tyrosine on acid hydrolysis, was produced by a strain of Bacillus subtilis (A 14) in a chemically defined medium containing glucose, ammonium acetate or ammonium chloride, potassium phosphate and other inorganic salts, and ferric citrate. 2. Under the conditions used growth was diphasic. Bacilysin was formed during the second phase of slower growth, and there was little production during the stationary phase. Nevertheless, bacilysin production occurred when protein synthesis was inhibited by chloramphenicol. It thus appears that there is no obligatory coupling of protein synthesis and bacilysin synthesis. 3. When dl-[1-(14)C]alanine was added to a growing culture of B. subtilis, (14)C was incorporated into bacilysin, which contains an N-terminal alanine residue. 4. Under similar conditions virtually no (14)C was incorporated into bacilysin from dl-[2-(14)C]tyrosine, l-[U-(14)C]tyrosine or [1-(14)C]acetate, although these compounds were used by the cell for the biosynthesis of other substances. These results indicate that neither tyrosine nor acetate is a precursor of the fragment of bacilysin which yields tyrosine on hydrolysis with hot 6n-hydrochloric acid. 5. The tyrosine-yielding fragment of bacilysin was labelled with (14)C from [1,6-ring-(14)C(2)]shikimic acid. The biosynthesis of bacilysin thus appears to involve a diversion from the pathway leading to aromatic amino acids at the shikimic acid stage, or a subsequent one.  相似文献   

18.
Two hypotheses about gut function have not received general support from studies in birds. Both make assumptions about how natural selection has influenced rates of nutrient uptake. The adaptive modulation hypothesis states that rates of absorption should vary within individuals to accommodate changes in nutrient availability of the diet. The spare capacity hypothesis states that the gut's ability to absorb nutrients should slightly exceed load determined by the organism's food intake. We focus on a recent rejection of these hypotheses in northern bobwhite quail (W. Karasov, personal communication) and demonstrate that a central assumption—that carrier-mediated transport predominates—is not supported. We use a pharmacokinetic technique to show that 52–92% (depending on assumptions of metabolizability and binding) of ingested l-glucose appears in plasma. Because l-glucose is not actively transported, its appearance in plasma must be due to passive absorption. This result suggests that previous studies in birds found uptake capacity to be much less than the observed load because they failed to consider passive absorption. When both passive and carrier-mediated transport are considered, capacity and load are fairly closely matched in quail. Our results also suggest that modulation of carrier-mediated transport may not be selected for in birds, because modulation via passive absorption is faster and requires less energy. An unexplored negative consequence of passive absorption, however, may be nonselective absorption of secondary compounds and toxins.  相似文献   

19.
20.
At a glucose concentration of 3mm or less, iodoacetamide had no effect on the release of insulin from microdissected pancreatic islets of ob/ob-mice. At higher glucose concentrations, iodoacetamide exerted both an initial stimulatory and a subsequent inhibitory action. When islets were perifused with 1mm-iodoacetamide and 17mm-glucose the inhibitory action predominated after about 15min of transient stimulation. With decreasing concentrations of iodoacetamide the stimulatory phase was gradually prolonged, and with 0.003-0.1mm-iodoacetamide stimulation only was observed for 75min. Prolonged stimulation was also noted after a short pulse of iodoacetamide. Similar responses to 0.1mm-iodoacetamide were observed with islets from normal mice. With islets from ob/ob-mice the effect of 0.1mm-iodoacetamide was reproduced with 0.1mm-iodoacetate, whereas 0.1mm-acetamide had no apparent effect. Iodoacetamide increased the V(max.) of glucose-stimulated insulin release without altering the apparent K(m) for glucose. Leucine, glibenclamide or theophylline could not replace glucose in this synergistic action with iodoacetamide. Iodoacetamide rather inhibited the insulin-releasing action of theophylline. Iodoacetamide-induced potentiation of the glucose-stimulated insulin release was rapidly and reversibly inhibited by mannoheptulose, adrenaline, or calcium deficiency. The potentiating effect on insulin release was not paralleled by effects on glucose oxidation or on islet fructose 1,6-diphosphate. However, the inhibitory action of iodoacetamide might be explained by inhibition of glycolysis as evidenced by an inhibition of glucose oxidation and a rise of fructose 1,6-diphosphate. The results support our previous hypothesis that thiol reagents can stimulate insulin release by acting on relatively superficial thiol groups in the beta-cell plasma membrane. Glycolysis seems to be necessary in order for iodoacetamide to stimulate in this way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号