首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Polycomb group (PcG) proteins belonging to the polycomb (Pc) repressive complexes 1 and 2 (PRC1 and PRC2) maintain homeotic gene silencing. In Drosophila, PRC2 methylates histone H3 on lysine 27, and this epigenetic mark facilitates recruitment of PRC1. Mouse PRC2 (mPRC2) has been implicated in X inactivation, as mPRC2 proteins transiently accumulate on the inactive X chromosome (Xi) at the onset of X inactivation to methylate histone H3 lysine 27 (H3-K27). In this study, we demonstrate that mPRC1 proteins localize to the Xi, and that different mPRC1 proteins accumulate on the Xi during initiation and maintenance of X inactivation in embryonic cells. The Xi accumulation of mPRC1 proteins requires Xist RNA and is not solely regulated by the presence of H3-K27 methylation, as not all cells that exhibit this epigenetic mark on the Xi show Xi enrichment of mPRC1 proteins. Our results implicate mPRC1 in X inactivation and suggest that the regulated assembly of PcG protein complexes on the Xi contributes to this multistep process.  相似文献   

5.
To equalize X-linked gene dosage between the sexes in mammalian females, Xist RNA inactivates one of the two X-chromosomes. Here, we report the crucial function of Xist exon 7 in X-inactivation. Xist exon 7 is the second-largest exon with a well-conserved repeat E in eutherian mammals, but its role is often overlooked in X-inactivation. Although female ES cells with a targeted truncation of the Xist exon 7 showed no significant differences in their Xist expression levels and RNA stability from control cells expressing wild-type Xist, compromised localization of Xist RNA and incomplete silencing of X-linked genes on the inactive X-chromosome (Xi) were observed in the exon 7-truncated mutant cells. Furthermore, the interaction between the mutant Xist RNA and hnRNP U required for localization of Xist RNA to the Xi was impaired in the Xist exon 7 truncation mutant cells. Our results suggest that exon 7 of Xist RNA plays an important role for stable Xist RNA localization and silencing of the X-linked genes on the Xi, possibly acting through an interaction with hnRNP U.  相似文献   

6.
Histone variant macroH2A confers resistance to nuclear reprogramming   总被引:3,自引:0,他引:3  
  相似文献   

7.
8.
X-chromosome inactivation leads to divergent fates for two homologous chromosomes. Whether one X remains active or becomes silenced depends on the activity of Xist, a gene expressed only from the inactive X and whose RNA product 'paints' the X in cis. Recent work argues that Xist RNA itself is the acting agent for initiating the silencing step. Xist RNA contains separable domains for RNA localization and chromosome silencing. While no Xist RNA-interacting factors have been identified, a growing collection of chromatin alterations have been identified on the inactive X, including variant histone H2A composition and histone H3 methylation. Some or all of these changes may be critical for chromosome-wide silencing. As none of the silencing proteins identified so far is unique to X chromosome inactivation, the specificity must partly reside in Xist RNA whose spread along the X orchestrates general silencing factors for this specific task.  相似文献   

9.
10.
目的:从异常核型人胚胎干细胞系中分离两种不同X染色体失活(XCI)状态的细胞,建立亚系,并进行对其XCI状态特征和多能性标记进行鉴定。方法:G显带鉴定人胚胎干细胞系ch HESC-3早晚期代数细胞的核型,H3K27me3免疫荧光染色鉴定早晚期ch HESC-3表观遗传差异,RT-PCR检测早晚期ch HESC-3中XIST基因的表达。利用单细胞克隆的培养分选亚系,H3K27me3、RNA polymeraseⅡ以及DAPI三种标记的共染后每种表观标记各选两株进行RT-PCR,检测两种亚系中XIST基因的表达。并对这四株细胞进行干细胞标记鉴定。结果:G显带结果证明早期ch HESC-3为正常核型,晚期代数核型为异常核型,牵涉到8条染色体的复杂结构变异。H3K27me3免疫荧光染色证明异常核型ch HESC-3中有部分细胞出现了H3K27me3凝集点,而正常核型细胞中未发现。正常核型细胞(ch HESC-3N)没有XIST基因表达,异常核型细胞(ch HESC-3C)中有表达。在RNA polymeraseⅡ着色缺口中发现H3K27me3凝集点的细胞亚株XIST基因表达阳性,polymeraseⅡ着色缺口中未发现H3K27me3凝集点的细胞亚株XIST基因表达阴性,XIST阳性和阴性细胞各选两株进行多能性标记免疫荧光染色均为阳性。结论:成功从异常核型人胚胎干细胞系中分离两种不同XCI状态的细胞并建立亚系,两种表观类型的亚系均保持多能性标记并能在长期培养中保持各自特性。  相似文献   

11.
The active and inactive X chromosomes have distinct epigenetic marks in somatic nuclei, which undergo reprogramming after transplantation into oocytes. We show that, despite the disappearance of Xist RNA coating in 30 min, the epigenetic memory of the inactive X persists with the precocious appearance of histone H3 trimethylation of lysine 27 (H3-3meK27), without the expected colocalization with Eed/Ezh2. Subsequently, Xist re-appears on the original inactive X, and the silent Xist on the active X undergoes re-activation, resulting in unusual biallelic Xist RNA domains. Despite this abnormal Xist expression pattern, colocalization of H3-3meK27 and Eed is thereafter confined to a single Xist domain, which is presumably on the original inactive X. These epigenetic events differ markedly from the kinetics of preferential paternal X inactivation in normal embryos. All the epigenetic marks on the X are apparently erased in the epiblast, suggesting that the oocyte and epiblast may have distinct properties for stepwise programming of the genome.  相似文献   

12.
X-chromosome inactivation has long served as an experimental model system for understanding the epigenetic regulation of gene expression. Central to this phenomenon is the long, non-coding RNA Xist that is specifically expressed from the inactive X chromosome and spreads along the entire length of the chromosome in cis. Recently, two of the proteins originally identified as components of the nuclear scaffold/matrix (S/MAR-associated proteins) have been shown to control the principal features of X-chromosome inactivation; specifically, context-dependent competency and the chromosome-wide association of Xist RNA. These findings implicate the involvement of nuclear S/MAR-associated proteins in the organization of epigenetic machinery. Here, we describe a model for the functional role of S/MAR-associated proteins in the regulation of key epigenetic processes.  相似文献   

13.
Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation) followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3) marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ~25% of the trophectoderm cells and in ~7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.  相似文献   

14.
The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5’-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function.  相似文献   

15.
16.
Histone H3 tail modifications are among the earliest chromatin changes in the X-chromosome inactivation process. In this study we investigated the relative profiles of two important repressive marks on the X chromosome: methylation of H3 lysine 9 (K9) and 27 (K27). We found that both H3K9 dimethylation and K27 trimethylation characterize the inactive X in somatic cells and that their relative kinetics of enrichment on the X chromosome as it undergoes inactivation are similar. However, dynamic changes of H3K9 and H3K27 methylation on the inactivating X chromosome compared to the rest of the genome are distinct, suggesting that these two modifications play complementary and perhaps nonredundant roles in the establishment and/or maintenance of X inactivation. Furthermore, we show that a hotspot of H3K9 dimethylation 5' to Xist also displays high levels of H3 tri-meK27. However, analysis of this region in G9a mutant embryonic stem cells shows that these two methyl marks are dependent on different histone methyltransferases.  相似文献   

17.
18.
19.
X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号