首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non‐coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2‐dependent H3K27me3 and SETD8‐dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3‐specific intracellular antibody or H3K27me3‐mintbody. By combining live‐cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP‐seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.  相似文献   

3.
During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.  相似文献   

4.
In mice, dosage compensation of X‐linked gene expression is achieved through the inactivation of one of the two X‐chromosomes in XX female cells. The complex epigenetic process leading to X‐inactivation is largely controlled by Xist and Tsix, two non‐coding genes of opposing function. Xist RNA triggers X‐inactivation by coating the inactive X, while Tsix is critical for the designation of the active X‐chromosome through cis‐repression of Xist RNA accumulation. Recently, a plethora of trans‐acting factors and cis‐regulating elements have been suggested to act as key regulators of either Xist, Tsix or both; these include ubiquitous factors such as Yy1 and Ctcf, developmental proteins such as Nanog, Oct4 and Sox2, and X‐linked regulators such as Rnf12. In this paper we summarise recent advances in our knowledge of the regulation of Xist and Tsix in embryonic stem (ES) and differentiating ES cells.  相似文献   

5.
6.
The reactivation of X‐linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X‐linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist‐inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X‐linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X‐linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.  相似文献   

7.
8.
《Epigenetics》2013,8(2):204-211
During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.  相似文献   

9.
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.  相似文献   

10.
11.
X chromosome inactivation (XCI) ensures an equal gene dosage between the sexes in placental mammals. Xist, a modular multi-domain X-encoded long non-coding RNA coats the X chromosome in cis during XCI. Xist recruits chromatin remodelers and repressor complexes ensuring silencing of the inactive X (Xi). Here, we review the recent work focused on the role of Xist functional repeats and interacting RNA-binding factors in the establishment of the silent state. Xist orchestrates recruitment of remodelers and repressors that first facilitate removal of the active chromatin landscape and subsequently direct the transition into a repressive heterochromatic environment. Some of these factors affect silencing on a chromosome-wide scale, while others display gene-specific silencing defects. The temporal order of recruitment shows each silencing step is party dependent on one another. After the Xi is established, many of the factors are dispensable, and a different repertoire of proteins ensure the silenced Xi is maintained and propagated.  相似文献   

12.
13.
In mammals, the levels of X-linked gene products in males and females are equalised by the silencing, early in development, of most of the genes on one of the two female X chromosomes. Once established, the silent state is stable from one cell generation to the next. In eutherian mammals, the inactive X chromosome (Xi) differs from its active homologue (Xa) in a number of ways, including increased methylation of selected CpGs, replication late in S-phase, expression of the Xistgene with binding of Xist RNA and underacetylation of core histones. The latter is a common property of genetically inactive chromatin but, in the case of Xi, it is not clear whether it is an integral part of the silencing process or simply a consequence of some other property of Xi, such as late replication. The present review describes two approaches that address this problem. The first shows that Xi in marsupial mammals also contains underacetylated H4, even though its properties differ widely from those of the eutherian Xi. The continued presence of histone underacetylation on Xi in these evolutionarily distant mammals argues for its fundamental importance. The second approach uses mouse embryonic stem cells and places H4 deacetylation in a sequence of events leading to complete X inactivation. The results argue that histone underacetylation plays a role in the stabilisation of the inactive state, rather than in its initiation. Dev. Genet. 22:65–73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
We have elucidated the kinetics of histone methylation during X inactivation using an inducible Xist expression system in mouse embryonic stem (ES) cells. Previous reports showed that the ability of Xist to trigger silencing is restricted to an early window in ES cell differentiation. Here we show that this window is also important for establishing methylation patterns on the potential inactive X chromosome. By immunofluorescence and chromatin immunoprecipitation experiments we show that histone H3 lysine 27 trimethylation (H3K27m3) and H4 lysine 20 monomethylation (H4K20m1) are associated with Xist expression in undifferentiated ES cells and mark the initiation of X inactivation. Both marks depend on Xist RNA localisation but are independent of silencing. Induction of Xist expression after the initiation window leads to a markedly reduced ability to induce H3K27m3, whereas expression before the restrictive time point allows efficient H3K27m3 establishment. Our data show that Xist expression early in ES cell differentiation establishes a chromosomal memory, which is maintained in the absence of silencing. One consequence of this memory is the ability to introduce H3K27m3 efficiently after the restrictive time point on the chromosome that has expressed Xist early. Our results suggest that this silencing-independent chromosomal memory has important implications for the maintenance of X inactivation, where previously self-perpetuating heterochromatin structures were viewed as the principal form of memory.  相似文献   

17.
Using computer-based methods, we determined the global distribution of short interspersed nuclear elements (SINEs) on human and mouse X chromosomes. It was shown that this distribution was similar to the distribution of CpG islands and genes, but was different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals (“boosters”) in Polycomb-dependent silencing of gene-rich segments during X inactivation.  相似文献   

18.
Histone variant macroH2A confers resistance to nuclear reprogramming   总被引:3,自引:0,他引:3  
  相似文献   

19.
In female somatic cells of mammalian species one X chromosome is inactivated to ensure dosage equality of X-encoded genes between females and males, during development and adulthood. X chromosome inactivation (XCI) involves various epigenetic mechanisms, including RNA mediated gene silencing in cis, DNA methylation, and changes in chromatin modifications and composition. XCI therefore provides an attractive paradigm to study epigenetic gene regulation in a more general context. The XCI process starts with counting of the number of X chromosomes present in a nucleus, and initiation of XCI follows if this number exceeds one per diploid genome. Recently, X-encoded RNF12 has been identified as a dose-dependent activator of XCI. In addition, other factors, including the pluripotency factors OCT4, SOX2 and Nanog, have been implicated to play a role in suppression of initiation of XCI. In this review, we highlight and explain these new and old findings in the context of a stochastic model for X chromosome counting and XCI initiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号