首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
果实表达PGIPs的基因克隆及功能研究进展   总被引:1,自引:0,他引:1  
多聚半乳糖醛酸酶(PGs)是病原真菌早期侵染植物的一个重要致病因子。多聚半乳糖醛酸酶抑制蛋白(PGIPs)作为植物防御蛋白,能特异性抑制真菌分泌的多聚半乳糖醛酸酶,并通过延长寡聚半乳糖醛酸(OGs)的稳定期激活植物防御反应。综述PGIPs在植物细胞中的定位,PGIPs与PGs之间的作用方式,PGIPs基因的分离与克隆,以及PGIPs对果实感病的影响,并对PGIPs的研究前景进行展望。  相似文献   

2.
内切多聚半乳糖醛酸酶(endo-polygalacturonase,endo-PG)是待异水解细胞壁成分多聚半乳糖醛酸的酶,水解产生的10~13个糖基的寡聚半乳糖醛酸片段是活性诱导因子,激活植物自身防御系统.我们已研究发现单子叶植物小麦中存在多聚半乳糖醛酸酶抑制蛋白(polygalacturonaseinhibitingprotein,PGIP),并已将其分离纯化,对其性质作了初步研究[1,2]文献报导[3]PGIP是在未分化的细胞中合成的.本文报导在悬浮培养的小麦细胞中加入Endo-PG观察其PGIP的生成,比较赤霉病的高抗品种与低抗品种中PGIP的合成情况,探讨PGIP与植物防御作…  相似文献   

3.
真菌多聚半乳糖醛酸酶研究进展   总被引:1,自引:0,他引:1  
赵晓燕  刘正坪 《菌物研究》2007,5(3):183-186
真菌多聚半乳糖醛酸酶是降解植物细胞壁果胶的主要降解酶之一,是植物病原真菌的致病因子之一。文中对真菌多聚半乳糖醛酸酶及其序列特征、多聚半乳糖醛酸酶的基因及其序列特征、多聚半乳糖醛酸酶的表达调控以及与病原真菌致病力之间的关系等方面进行了综述。  相似文献   

4.
小麦内切多聚半乳糖醛酸酶抑制蛋白的分离纯化研究   总被引:9,自引:0,他引:9  
小麦内切多聚半乳糖醛酸酶抑制蛋白的分离纯化研究郑远旗,杨宗剑,李建吾,周立,吴文莲(四川大学生物系,成都610064)余露(中国科学院成都生物研究所,成都610041)关键词内切多聚半乳糖醛酸酶抑制蛋白;内切多聚半乳糖醛酸酶;纯化;小麦内切多聚半乳糖...  相似文献   

5.
真菌果胶酶的分子生物学研究进展   总被引:12,自引:0,他引:12  
近10年来国外在果胶酶分子生物学研究上取得了重大进展,从11个属的真菌克隆了50个以上的基因并测序。对果胶酶基因的结构、功能、调控、录译后加工等方面进行了深入探讨。已克隆的果胶酶基因以多聚半乳糖醛酸酶(PG)基因和果胶裂解酶(PL)基因为主,也有果胶酯酶(PE)基因和鼠李半乳糖醛酸酶(RHG)基因,大多有内含子。前体蛋白一般有N-信号肽和糖基化位点。果胶酶一般受果胶、低浓度的(0.1%)D-半乳糖醛酸等诱导,而受较高浓度(1%)的半乳糖醛酸、抗体、某些抗菌素抑制。  相似文献   

6.
真菌病原体借助于能降解细胞壁多糖的多聚半乳糖醛酸酶(PG)而侵袭植物。为了抵御病原体的侵害,一些植物组织含有能抑制细胞壁降解生物的PG活性的蛋白(PGIP)。有关PGIP的研究很少,因为,可从植物组织中纯化出来的这种物质有限。  相似文献   

7.
PGIP在植物抗病方面的研究进展   总被引:8,自引:0,他引:8  
至今为止,已在20多种植物体内发现了多聚半乳糖醛酸酶抑制蛋白(PGIP)。这类蛋白质主要集中于细胞壁和内膜系统,但在不同生长时间、不同品种及不同器官中其含量是不一样的,研究表明这种差异与植物的抗性强弱有着密切关系。PGIP是病原真菌分泌的endo-PG的抑制剂,因此能延缓病原真菌对植物细胞壁的降解。来自菜豆和小平的实验证明表明病原真菌侵染植株能诱导pgip基因高水平转录、表达,但pgip基因家族对  相似文献   

8.
至今为止,已在20多种植物体内发现了多聚半乳糖醛酸酶抑制蛋白(PGIP)。这类蛋白质主要集中于细胞壁和内膜系统,但在不同生长时间、不同品种及不同器官中其含量是不一样的,研究表明这种差异与植物的抗性强弱有着密切关系。PGIP是病原真菌分泌的endo_PG的抑制剂,因此能延缓病原真菌对植物细胞壁的降解。来自菜豆和小麦的实验证据表明病原真菌侵染植株能诱导pgip基因高水平转录、表达,但pgip基因家族对这种诱导信号应答的分子机制待于进一步研究。  相似文献   

9.
多聚半乳糖醛酸酶(PG酶)是一种在植物细胞壁降解中起重要的作用的酶。作者介绍了PG酶在果实成熟软化中的作用。概述了PG酶基因及其表达调控,评述了乙烯对PG酶合成的影响。  相似文献   

10.
近10年来国外在果胶酶分子生物学研究上取得了重大进展,从11个属的真菌克隆了50个以上的基因并测序。对果胶酶基因的结构、功能、调控、录译后加工等方面进行了深入探讨。已克隆的果胶酶基因以多聚半乳糖醛酸酶(PG)基因和果胶裂解酶(PL)基因为主,也有果胶酯酶(PE)基因和鼠李半乳糖醛酸酶(RHG)基因,大多有内含子。前体蛋白一般有N信号肽和糖基化位点。果胶酶一般受果胶、低浓度的(01%)D半乳糖醛酸等诱导,而受较高浓度(1%)的半乳糖醛酸、抗体、某些抗菌素抑制。  相似文献   

11.
Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi   总被引:10,自引:0,他引:10  
Polygalacturonase-inhibiting proteins (PGIPs) are ubiquitous plant cell wall proteins that are directed against fungal polygalacturonases (PGs), which are important pathogenicity factors. The inhibiting activity of PGIPs directly reduces the aggressive potential of PGs. In addition, it causes PGs to form more long-chain oligogalacturonides that are able to induce defense responses, thereby indirectly contributing to the plant defense. Recent evidence demonstrates that PGIPs are efficient defense proteins and limit fungal invasion. PGIPs and the products of many plant resistance genes share a leucine-rich repeat (LRR) structure, which provides specific recognition of pathogen-derived molecules. The high level of polymorphism of both PGIPs and polygalacturonases is an invaluable tool for deciphering the structure, function and evolution of plant LRR proteins and their ligands. Furthermore, information about PGIP structure and evolution paves the way to the development of efficient strategies for crop protection.  相似文献   

12.
Polygalacturonases (PGs) are produced by fungal pathogens during early plant infection and are believed to be important pathogenicity factors. Polygalacturonase-inhibiting proteins (PGIPs) are plant defense proteins which reduce the hydrolytic activity of endoPGs and favor the accumulation of long-chain oligogalacturonides (OGs) which are elicitors of a variety of defense responses. PGIPs belong to the superfamily of leucine reach repeat (LRR) proteins which also include the products of several plant resistance genes. A number of evidence demonstrates that PGIPs efficiently inhibit fungal invasion.  相似文献   

13.
Polygalacturonic acid (PGA) was hydrolyzed by polygalacturonases (PGs) purified from six fungi. The oligogalacturonide products were analyzed by HPAEC-PAD (high performance anion exchange chromatography-pulsed amperimetric detection) to assess their relative amounts and degrees of polymerization. The abilities of the fungal PGs to reduce the viscosity of a solution of PGA were also determined. The potential abilities of four polygalacturonase-inhibiting proteins (PGIPs) from three plant species to inhibit or to modify the hydrolytic activity of the fungal PGs were determined by colorimetric and HPAEC-PAD analyses, respectively. Normalized activities of the different PGs acting upon the same substrate resulted in one of two distinct oligogalacturonide profiles. Viscometric analysis of the effect of PGs on the same substrate also supports two distinct patterns of cleavage. A wide range of susceptibility of the various PGs to inhibition by PGIPs was observed. The four PGs that were inhibited by all PGIPs tested exhibited an endo/exo mode of substrate cleavage, while the three PGs that were resistant to inhibition by one or more of the PGIPs proceed by a classic endo pattern of cleavage.  相似文献   

14.
Polygalacturonase-inhibiting proteins are plant extracellular leucine-rich repeat proteins that specifically bind and inhibit fungal polygalacturonases. The interaction with PGIP limits the destructive potential of polygalacturonases and might trigger the plant defence responses induced by oligogalacturonides. A high degree of polymorphism is found both in PGs and PGIPs, accounting for the specificity of different plant inhibitors for PGs from different fungi. Here, we review the structural features and our current understanding of the PG-PGIP interaction.  相似文献   

15.
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis thaliana, PGIPs with comparable activity against BcPG1, an important pathogenicity factor of the necrotrophic fungus Botrytis cinerea, are encoded by two genes, AtPGIP1 and AtPGIP2. Both genes are induced by fungal infection through different signaling pathways. We show here that transgenic Arabidopsis plants expressing an antisense AtPGIP1 gene have reduced AtPGIP1 inhibitory activity and are more susceptible to B. cinerea infection. These results indicate that PGIP contributes to basal resistance to this pathogen and strongly support the vision that this protein plays a role in Arabidopsis innate immunity.  相似文献   

16.
Polygalacturonase inhibiting proteins: players in plant innate immunity?   总被引:1,自引:0,他引:1  
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular leucine-rich repeat (LRR) proteins that recognize and inhibit fungal polygalacturonases (PGs). The PG-PGIP interaction favours the accumulation of elicitor-active oligogalacturonides and causes the activation of defence responses. Small gene families encode PGIP isoforms that differ in affinity and specificity for PGs secreted by different pathogens. The consensus motif within the LRR structure of PGIPs is the same as that of the extracellular receptors of the plant innate immune system. Structural and functional evidence suggest that PGIPs are versatile proteins involved in innate immunity and that they are capable of recognizing different surface motifs of functionally related but structurally variable PGs.  相似文献   

17.
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant’s resistance to disease.  相似文献   

18.
19.
Polygalacturonases (PG) have evolved in the past years from a pectinase “simply” being used for food processing to an important parameter in plant–fungal interaction. PG-inhibiting proteins (PGIP) that are synthesised in plants as a specific response to PGs of pathogenic fungi, have become a focus as a possible target in resistance breeding, and PGIPs are also a concern as an inhibiting factor in food processing. Plant PGs have been identified as a major factor in fruit ripening, and PG-deficient transgenic plants have been bred. Mainly fungal PGs are used in industrial processes for juice clarification and the range of enzymes is being extended through new recombinant and non-recombinant fungal strains. Finally, novel fields of application can be envisaged for PGs in the production of oligogalacturonides as functional food components. Here we aim to highlight the various fields where PGs are encountered and where they are of biological or technological importance. Received: 22 June 1999 / Received revision: 4 October 1999 / Accepted: 10 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号