首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish. BrdU incorporation indicated that dRFP-positive cells were proliferating and a double labeling assay revealed that a significant fraction of the Her4-dRFP positive population was also GFAP-GFP positive. Our observations suggest that a reporter line with Notch-dependent gene expression can provide a tool to examine proliferating neural precursors and/or neuronal/glial precursors in the development of the adult nervous system to examine the model in which Notch signaling maintains proliferating neural precursors in the neural tube.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Dissecting the mechanisms of suppressor of hairless function   总被引:1,自引:0,他引:1  
  相似文献   

14.
The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jkappa-deficient background, indicating that it indeed requires Notch/RBP-Jkappa signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway.  相似文献   

15.
The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosophila melanogaster gene friend of echinoid (fred), a paralogue of echinoid (ed), a gene recently identified as a negative regulator of the EGFR pathway. fred function was examined in transgenic flies by using inducible RNA interference (RNAi). Suppression of fred in developing wing discs results in specification of ectopic SOPs, additional microchaeta, and cell death. In eye-antennal discs, fred suppression causes a rough eye phenotype. These phenotypes are suppressed by overexpression of Notch, Suppressor of Hairless [Su(H)], and Enhancer of split m7. In contrast, overexpression of Hairless, a negative regulator of the Notch pathway, and decreased Su(H) activity enhance these phenotypes. Thus, fred acts in close concert with the Notch signaling pathway. Dosage-sensitive genetic interaction also suggests a close relationship between fred and ed.  相似文献   

16.
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1.  相似文献   

17.
18.
19.
Mastermind, which is a Notch signal component, is a nuclear protein and is thought to contribute to the transactivation of target genes. Previously we showed that XMam1, Xenopus Mastermind1, was essential in the transactivation of a Notch target gene, XESR-1, and was involved in primary neurogenesis. To examine the function of XMam1 during Xenopus early development in detail, XMam1-overexpressed embryos were analyzed. Overexpression of XMam1 ectopically caused the formation of a cell mass with pigmentation on the surface of embryos and expressed nrp-1. The nrp-1-positive cell mass was produced by XMam1 without expression of the Notch target gene, XESR-1, and not by the activation form of Notch, NICD. The ectopic expression of nrp-1 was not inhibited by co-injection of XMam1 with a molecule known to inhibit Notch signaling. The nrp-1 expression was also recognized in the animal cap injected with XMam1DeltaN, which lacks the basic domain necessary for interacting with NICD and Su(H). These results show that XMam1 has the ability to induce the cell fate into the neurogenic lineage in a Notch-independent manner.  相似文献   

20.
The Notch signaling pathway plays an important role in many cell-fate decisions during development. Here we investigate the regulation and function of the conserved gene XNAP, which is a member of the Delta-Notch synexpression group in Xenopus. XNAP encodes a small protein with two C-terminal tandem ankyrin repeats which is expressed in the neurectoderm and in the presomitic mesoderm in a pattern that resembles that of other component of the Notch pathway. When a myc-tag form of XNAP is overexpressed in Xenopus or Hela cells, XNAP protein is detected both in the nucleus and the cytoplasm. In embryos and in animal cap assays, XNAP expression is activated, perhaps directly, by the Notch pathway and this activation appears to be Su(H) dependent. Overexpression of XNAP in embryos decreases Notch signaling, which leads to an increase in the number of primary neurons that form within the domains of the neural plate where neurogenesis normally occurs. In culture Hela cells, XNAP overexpression interferes with ICD activation of a Notch regulated reporter gene. Together, these data indicate that XNAP is a novel target of the Notch pathway that may, in a feedback loop, modulate its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号