首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
During insect oogenesis, the follicular epithelium undergoes both cell proliferation and apoptosis, thus modulating ovarian follicle growth. The Hippo pathway is key in these processes, and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster. However, nothing is known about the role of the Hippo pathway in primitive panoistic ovaries. This work examines the mRNA expression levels of the main components of the Hippo pathway in the panoistic ovary of the basal insect species Blattella germanica, and demonstrates the function of Hippo through RNAi. In Hippo-depleted specimens, the follicular cells of the basal ovarian follicles proliferate without arresting cytokinesis; the epithelium therefore becomes bilayered, impairing ovarian follicle growth. This phenotype is accompanied by long stalks between the ovarian follicles. In D. melanogaster loss of function of Notch determines that the stalk is not developed. With this in mind, we tested whether Hippo and Notch pathways are related in B. germanica. In Notch (only)-depleted females, no stalks were formed between the ovarian follicles. Simultaneous depletion of Hippo and Notch rescued partially the stalk to wild-type. Unlike in the meroistic ovaries of D. melanogaster, in panoistic ovaries the Hippo pathway appears to regulate follicular cell proliferation by acting as a repressor of Notch, triggering the switch from mitosis to the endocycle in the follicular cells. The phylogenetically basal position of B. germanica suggests that this might be the ancestral function of Hippo in insect ovaries.  相似文献   

4.
5.
6.
A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.  相似文献   

7.
8.
During Drosophila mid-oogenesis, follicular epithelial cells switch from the mitotic cycle to the specialized endocycle in which the M phase is skipped. The switch, along with cell differentiation in follicle cells, is induced by Notch signaling. We show that the homeodomain gene cut functions as a linker between Notch and genes that are involved in cell-cycle progression. Cut was expressed in proliferating follicle cells but not in cells in the endocycle. Downregulation of Cut expression was controlled by the Notch pathway and was essential for follicle cells to differentiate and to enter the endocycle properly. cut-mutant follicle cells entered the endocycle and differentiated prematurely in a cell-autonomous manner. By contrast, prolonged expression of Cut caused defects in the mitotic cycle/endocycle switch. These cells continued to express an essential mitotic cyclin, Cyclin A, which is normally degraded by the Fizzy-related-APC/C ubiquitin proteosome system during the endocycle. Cut promoted Cyclin A expression by negatively regulating Fizzy-related. Our data suggest that Cut functions in regulating both cell differentiation and the cell cycle, and that downregulation of Cut by Notch contributes to the mitotic cycle/endocycle switch and cell differentiation in follicle cells.  相似文献   

9.
ABSTRACT: INTRODUCTION: Establishment of distinct follicle cell fates at the early stages of Drosophila oogenesis is crucial for achieving proper morphology of individual egg chambers. In Drosophila oogenesis, Notch-signaling controls proliferation and differentiation of follicular cells, which eventually results in the polarization of the anterior-posterior axis of the oocyte. Here we analyzed the functions of Tribolium Notch-signaling factors during telotrophic oogenesis, which differs fundamentally from the polytrophic ovary of Drosophila. RESULTS: We found Notch-signaling to be required for maintaining the mitotic cycle of somatic follicle cells. Upon Delta RNAi, follicle cells enter endocycle prematurely, which affects egg-chamber formation and patterning. Interestingly, our results indicate that Delta RNAi phenotypes are not solely due to the premature termination of cell proliferation. Therefore, we monitored the terminal /stalk cell precursor lineage by molecular markers. We observed that upon Delta RNAi terminal and stalk cell populations were absent, suggesting that Notch-signaling is also required for the specification of follicle cell populations, including terminal and stalk precursor cells. CONCLUSIONS: We demonstrate that with respect to mitotic cycle/endocycle switch Notch-signaling in Tribolium and Drosophila has opposing effects. While in Drosophila a Delta-signal brings about the follicle cells to leave mitosis, Notch-signaling in Tribolium is necessary to retain telotrophic egg-chambers in an "immature" state. In most instances, Notch-signaling is involved in maintaining undifferentiated (or preventing specialized) cell fates. Hence, the role of Notch in Tribolium may reflect the ancestral function of Notch-signaling in insect oogenesis. The functions of Notch-signaling in patterning the follicle cell epithelium suggest that Tribolium oogenesis may - analogous to Drosophila - involve the stepwise determination of different follicle cell populations. Moreover, our results imply that Notch-signaling may contribute at least to some aspects of oocyte polarization and AP axis also in telotrophic oogenesis.  相似文献   

10.
11.
The transmembrane receptor Notch is used repeatedly during development for a variety of essential functions. During Drosophila oogenesis, Notch activity is required first to specify particular follicle cell fates, then to promote the differentiation of all follicle cell types, to promote border cell migration, and then to form dorsal appendages, raising the question as to how Notch activity is spatially and temporally regulated. Here we show the Notch activity pattern during oogenesis. Notch activation was found in many follicle cells at stage 6 but then at stage 9 was restricted to migrating border cells, despite uniform expression of Delta. Expression of Kuzbanian (KUZ), a metalloproteinase that can activate Notch as well as cleave other substrates, is enriched in border cells at stage 9; and dominant-negative KUZ caused a strong border cell migration defect, without affecting expression of markers of border cell fate or follicle cell differentiation. Constitutively active Notch rescued the migration defect due to dominant-negative KUZ, and conditional alleles of Delta and Notch also exhibited border cell migration defects. Expression of two different reporters of Notch activity was lost upon expression of dominant-negative KUZ. Taken together these results show that Notch activation and KUZ expression are restricted to border cells at stage 9 of oogenesis and are required for migration, but not differentiation, of these cells. This represents a previously unrecognized mechanism for achieving spatial restriction of Notch signaling.  相似文献   

12.
The developmental signals that regulate the switch from genome-wide DNA replication to site-specific amplification remain largely unknown. Drosophila melanogaster epithelial follicle cells, which begin synchronized chorion gene amplification after three rounds of endocycle, provide an excellent model for study of the endocycle/gene amplification (E/A) switch. Here, we report that down-regulation of Notch signaling and activation of ecdysone receptor (EcR) are required for the E/A switch in these cells. Extended Notch activity suppresses EcR activation and prevents exit from the endocycle. Tramtrack (Ttk), a zinc-finger protein essential for the switch, is regulated negatively by Notch and positively by EcR. Ttk overexpression stops endoreplication prematurely and alleviates the endocycle exit defect caused by extended Notch activity or removal of EcR function. Our results reveal a developmental pathway that includes down-regulation of Notch, activation of the EcR, up-regulation of Ttk to execute the E/A switch, and, for the first time, the genetic interaction between Notch and ecdysone signaling in regulation of cell cycle programs and differentiation.  相似文献   

13.
14.
15.
16.
17.
The Caenorhabditis elegans LIM homeobox gene lin-11 plays crucial roles in the morphogenesis of the reproductive system and differentiation of several neurons. The expression of lin-11 in different tissues is regulated by enhancer regions located upstream as well as within lin-11 introns. These regions are functionally separable suggesting that multiple regulatory inputs operate to control the spatiotemporal pattern of lin-11 expression. To further dissect apart the nature of lin-11 regulation we focused on three Caenorhabditis species C. briggsae, C. remanei, and C. brenneri that are substantially diverged from C. elegans but share almost identical vulval morphology. We show that, in these species, the 5′ region of lin-11 possesses conserved sequences to activate lin-11 expression in the reproductive system. Analysis of the in vivo role of these sequences in C. elegans has led to the identification of three functionally distinct enhancers for the vulva, VC neurons, and uterine π lineage cells. We found that the π enhancer is regulated by FOS homolog FOS-1 and LIN-12/Notch pathway effectors, LAG-1 (Su(H)/CBF1 family) and EGL-43 (EVI1 family). These results indicate that multiple factors cooperate to regulate π-specific expression of lin-11 and together with other findings suggest that the mechanism of lin-11 regulation by LIN-12/Notch signaling is evolutionarily conserved in Caenorhabditis species. Our work demonstrates that 4-way comparison is a powerful tool to study conserved mechanisms of gene regulation in C. elegans and other nematodes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号