首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Ribosomal protein S6 kinase plays a critical role in the regulation of cell growth and energy metabolism. S6K belongs to the AGC family of serine/threonine kinases and is a downstream effector of the mTOR and PI3K signalling pathways. The activity and subcellular localisation of S6K are tightly controlled by phosphorylation/dephosphorylation events. We have recently demonstrated that steady-state levels of S6K isoforms, S6K1 and S6K2, are regulated by ubiquitination-mediated proteasomal degradation. In this study, we report for the first time that the ubiquitination status of S6K isoforms is coordinated by signalling pathways induced by mitogenic stimuli and extracellular stresses. The induction of signal transduction by serum and growth factors significantly increases the level of S6K ubiquitination, while the treatment of cells with UV and staurosporine has the opposite effect. Furthermore, we found that the phosphorylation/activation of S6Ks does not correlate directly with the induction of their ubiquitination in response to diverse cellular stimuli. This study suggests that the ubiquitination and subsequent proteasomal degradation of S6K are controlled by signalling pathways, which could possibly facilitate their association with the components of the ubiquitination machinery.  相似文献   

2.
FGF signalling is needed for the proper establishment of the mesodermal cell layer in Drosophila embryos. The activation of the FGF receptor Heartless triggers the di-phosphorylation of MAPK in the mesoderm, which accumulates in a graded fashion with the highest levels seen at the dorsal edge of the mesoderm. We have examined the specific requirement for FGF signalling in the spreading process. We show that only the initial step of spreading, specifically the establishment of contact between the ectoderm and the mesoderm, depends upon FGF signalling, and that unlike the role of FGF signalling in the differentiation of heart precursors this function cannot be replaced by other receptor tyrosine kinases. The initiation of mesoderm spreading requires the FGF receptor to possess a functional kinase domain, but does not depend upon the activation of MAPK. Thus, the dispersal of the mesoderm at early stages is regulated by pathways downstream of the FGF receptor that are independent of the MAPK cascade. Furthermore, we demonstrate that the activation of MAPK by Heartless needs additional cues from the ectoderm. We propose that FGF signalling is required during the initial stages of mesoderm spreading to promote the efficient interaction of the mesoderm with the ectoderm rather than having a long range chemotactic function, and we discuss this in relation to the cellular mechanism of mesoderm spreading.  相似文献   

3.
Phosphoinositide 3-kinases (PI3Ks) are important signaling enzymes involved in the regulation of a number of critical cell functions. Significant progress has been made during the last few years in defining the implication of individual PI3K isoforms. The role of the class IA PI3Kβ in different cell types has only been recently uncovered by the use of isoform-selective inhibitors and the development of mouse models harboring p110β catalytic subunit knock-out or germline knock-in of a kinase-dead allele of p110β. Although it is classically admitted that class IA PI3Ks are activated by receptor tyrosine kinases through recruitment of the regulatory subunits to specific tyrosine phosphorylated motifs via their SH2 domains, PI3Kβ is activated downstream of G protein-coupled receptors, and by co-operation between heterotrimeric G proteins and tyrosine kinases. PI3Kβ has been extensively studied in platelets where it appears to play an important role downstream of ITAM signaling, G protein-coupled receptors and aIIbβ3 integrin. Accordingly, mouse exhibiting p110β inactivation selectively in megakaryocyte/platelets are resistant to thromboembolism induced by carotid injury. The present review summarizes recent data concerning the mechanisms of PI3Kβ regulation and the roles of this PI3K isoform in blood platelet functions and other cell types.  相似文献   

4.
Class IA phosphoinositide 3-kinases (PI3Ks) represent a group of heterodimeric lipid kinases with important functions in cellular signal transduction. The regulatory p85 subunit constitutively binds to the catalytic p110 subunit and mediates the recruitment of the heterodimer to various membrane-localized proteins upon activation by a vast array of stimuli. The functional characterization of protein domains that mediate p85 function has been hampered by a lack of structural data. Therefore, we investigated a 35-aa region in the inter-SH2 domain of p85, reported to be necessary for binding of p110, by site-directed mutagenesis and evaluated the importance of individual amino acids for PI3K heterodimer formation. This approach led to the identification of an 11-aa region required for p110 binding in vitro and mesoderm induction during early Xenopus development in vivo. Further analyses revealed two pairs of hydrophobic amino acids within this region, which are particularly important for high-affinity intersubunit interaction. Thus, our data provide further insight into the molecular mechanisms of PI3K intersubunit interaction and led to the identification of new p85 mutant proteins with varying degrees of dominant-negative effects that will be helpful for future PI3K-related research.  相似文献   

5.
PI3K and Erk MAPK mediate ErbB signaling in Xenopus gastrulation   总被引:1,自引:0,他引:1  
Nie S  Chang C 《Mechanisms of development》2007,124(9-10):657-667
ErbB signaling regulates cell adhesion and movements during Xenopus gastrulation, but the downstream pathways involved have not been elucidated. In this study, we show that phosphatidylinositol-3 kinase (PI3K) and Erk mitogen-activated protein kinase (MAPK) mediate ErbB signaling to regulate gastrulation. Both PI3K and MAPK function sequentially in mesoderm specification and movements, and ErbB signaling is important only for the late phase activation of these pathways to control cell behaviors. Activation of either PI3K or Erk MAPK rescues gastrulation defects in ErbB4 morphant embryos, and restores convergent extension in the trunk mesoderm as well as coherent cell migration in the head mesoderm. The two signals preferentially regulate different aspects of cell behaviors, with PI3K more efficient in rescuing cell adhesion and spreading and MAPK more effective in stimulating the formation of filopodia. PI3K and MAPK also weakly activate each other, and together they modulate gastrulation movements. Our results reveal that PI3K and Erk MAPK, which have previously been considered as mesodermal inducing signals, also act downstream of ErbB signaling to participate in regulation of gastrulation morphogenesis.  相似文献   

6.
Phosphoinositide 3-kinases (PI3Ks) are dual specificity lipid and protein kinases. While the lipid-dependent PI3K downstream signaling is well characterized, little is known about PI3K protein kinase signaling and structural determinants of lipid substrate specificity across the various PI3K classes. Here we show that sequences C-terminal to the PI3K ATP-binding site determine the lipid substrate specificity of the class IA PI3Kalpha (p85/p110alpha). Transfer of such activation loop sequences from class II PI3Ks, class III PI3Ks, and a related mammalian target of rapamycin (FRAP) into p110alpha turns the lipid substrate specificity of the resulting hybrid protein into that of the donor protein, while leaving the protein kinase activity unaffected. All resulting hybrids lacked the ability to produce phosphatidylinositol 3,4,5-trisphosphate in intact cells. Amino acid substitutions and structure modeling showed that two conserved positively charged (Lys and Arg) residues in the activation loop are crucial for the functionality of class I PI3Ks as phosphatidylinositol 4,5-bisphosphate kinases. By transient transfecion of 293 cells, we show that p110alpha hybrids, although unable to support lipid-dependent PI3K signaling, such as activation of protein kinase B/Akt and p70(S6k), retain the capability to associate with and phosphorylate insulin receptor substrate-1, with the same specificity and higher efficacy than wild type PI3Kalpha. Our data lay the basis for the understanding of the class I PI3K substrate selectivity and for the use of PI3Kalpha hybrids to dissect PI3Kalpha function as lipid and protein kinase.  相似文献   

7.
8.
Development of the vertebrate embryo requires strict coordination of a highly complex series of signaling cascades, that drive cell proliferation, differentiation, migration, and the general morphogenetic program. Members of the Map kinase signaling pathway are repeatedly required throughout development to activate the downstream effectors, ERK, p38, and JNK. Regulation of these pathways occurs at many levels in the signaling cascade, with the Map3Ks playing an essential role in target selection. The thousand and one amino acid kinases (Taoks) are Map3Ks that have been shown to activate both p38 and JNK and are linked to neurodevelopment in both invertebrate and vertebrate organisms. In vertebrates, there are three Taok paralogs (Taok1, Taok2, and Taok3) which have not yet been ascribed a role in early development. Here we describe the spatiotemporal expression of Taok1, Taok2, and Taok3 in the model organism Xenopus laevis. The X. laevis Tao kinases share roughly 80% identity to each other, with the bulk of the conservation in the kinase domain. Taok1 and Taok3 are highly expressed in pre-gastrula and gastrula stage embryos, with initial expression localized to the animal pole and later expression in the ectoderm and mesoderm. All three Taoks are expressed in the neural and tailbud stages, with overlapping expression in the neural tube, notochord, and many anterior structures (including branchial arches, brain, otic vesicles, and eye). The expression patterns described here provide evidence that the Tao kinases may play a central role in early development, in addition to their function during neural development, and establish a framework to better understand the developmental roles of Tao kinase signaling.  相似文献   

9.
磷脂酰肌醇3-激酶(phosphatidylinositol-3 kinase,PI3K)是细胞内重要的信号分子,它具有调节细胞增殖、分化、代谢、凋亡等功能。PI3K的基因易发生突变和扩增,从而导致PI3K被激活,与肿瘤的形成和发展密切相关。IA型的PI3K及其下游的信号分子组成的通路参与调节肿瘤细胞的增殖、存活、黏附、迁移等活动。综述了IA型PI3K——PI3Kα、PI3Kβ和PI3Kδ与肿瘤发生、发展的关系,列举了20个具有代表性的IA型PI3K抑制剂,并讨论了它们的分子抑制机制。  相似文献   

10.
BACKGROUND INFORMATION: FGF (fibroblast growth factor) signalling is known to be required for many aspects of mesoderm formation and patterning during Xenopus development and has been implicated in regulating genes required for the specification of both blood and skeletal muscle lineages. RESULTS: In the present study, we have specifically knocked down the expression of FGF4 using AMO (antisense morpholino oligonucleotide)-mediated inhibition and demonstrate that FGF4 acts in the dorsal marginal zone to restrict blood development and promote the development of skeletal muscle. In addition, we used a drug inhibitor of FGF signalling and an inducible form of FGFR1 (FGF receptor 1) to identify a period of competence during late blastula and gastrula stages when FGF signalling acts to regulate blood versus muscle specification. Notably, we found that it is the dorsal activity of FGF that is required to restrict the expression of SCL (stem cell leukaemia) to the ventral blood island. CONCLUSIONS: Our data indicate that FGF4 is a key organizer-derived signal involved in the process of dorsoventral patterning of the mesoderm.  相似文献   

11.
Xenopus oocytes expressing fibroblast growth factor receptors (FGFRs) from the hormone-independent breast cancer cells, MDA-MB-231, are used as a biological system to analyze the signalling cascades initiated by FGF1. FGF1 induces ERK2 phosphorylation and G2/M transition. These events are dependent on the Shc/Grb2/Ras pathway, on Src and PI3Kinase (PI3K), as shown by the use of SH2 domains or dominant negative proteins, and on PLC gamma and calcium as demonstrated by a PLC gamma inhibitory peptide and BAPTA-AM. FGF1 mobilizes Ins(1,4,5)P3-sensitive calcium stores, as recorded through the inhibition by caffeine of a chloride calcium-dependent current in expressing oocytes. This study shows that the transduction cascades induced by FGF1 on FGFRs from MDA-MB-231 cells represent the sum of Ras, Src, PI3K, and PLC gamma pathways. It emphasizes the mitogenic effect of the PLC gamma-calcium cascade.  相似文献   

12.
The PI3Ks (phosphatidylinositol 3-kinases) regulate cellular signalling networks that are involved in processes linked to the survival, growth, proliferation, metabolism and specialized differentiated functions of cells. The subversion of this network is common in cancer and has also been linked to disorders of inflammation. The elucidation of the physiological function of PI3K has come from pharmacological studies, which use the enzyme inhibitors Wortmannin and LY294002, and from PI3K genetic knockout models of the effects of loss of PI3K function. Several reports have shown that LY294002 is not exclusively selective for the PI3Ks, and could in fact act on other lipid kinases and additional apparently unrelated proteins. Since this inhibitor still remains a drug of choice in numerous PI3K studies (over 500 in the last year), it is important to establish the precise specificity of this compound. We report here the use of a chemical proteomic strategy in which an analogue of LY294002, PI828, was immobilized onto epoxy-activated Sepharose beads. This affinity material was then used as a bait to fish-out potential protein targets from cellular extracts. Proteins with high affinity for immobilized PI828 were separated by one-dimensional gel electrophoresis and identified by liquid chromatography-tandem MS. The present study reveals that LY294002 not only binds to class I PI3Ks and other PI3K-related kinases, but also to novel targets seemingly unrelated to the PI3K family.  相似文献   

13.
Although the mechanisms involved in the activation of mitogen-activated protein kinases (MAPK) by receptor tyrosine kinases do not display an obvious role for phosphoinositide 3-kinases (PI3Ks), we have observed in the nontransformed cell line Vero stimulated with epidermal growth factor (EGF) that wortmannin and LY294002 nearly abolished MAPK activation. The effect was observed under strong stimulation and was independent of EGF concentration. In addition, three mutants of class Ia PI3Ks were found to inhibit MAPK activation to an extent similar to their effect on Akt/protein kinase B activation. To determine the importance of PI3K lipid kinase activity in MAPK activation, we have used the phosphatase PTEN and the pleckstrin homology domain of Tec kinase. Overexpression of these proteins, but not control mutants, was found to inhibit MAPK activation, suggesting that the lipid products of class Ia PI3K are necessary for MAPK signaling. We next investigated the location of PI3K in the MAPK cascade. Pharmacological inhibitors and dominant negative forms of PI3K were found to block the activation of Ras induced by EGF. Upstream from Ras, although association of Grb2 with its conventional effectors was independent of PI3K, we have observed that the recruitment of the tyrosine phosphatase SHP2 required PI3K. Because SHP2 was also essential for Ras activation, this suggested the existence of a PI3K/SHP2 pathway leading to the activation of Ras. In addition, we have observed that the docking protein Gab1, which is involved in PI3K activation during EGF stimulation, is also implicated in this pathway downstream of PI3K. Indeed, the association of Gab1 with SHP2 was blocked by PI3K inhibitors, and expression of Gab1 mutant deficient for binding to SHP2 was found to inhibit Ras stimulation without interfering with PI3K activation. These results show that, in addition to Shc and Grb2, a PI3K-dependent pathway involving Gab1 and SHP2 is essential for Ras activation under EGF stimulation.  相似文献   

14.
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α-p110 and p85α-PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α-PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.  相似文献   

15.
16.
Intracellular signals elicited by LDLs are likely to play a role in the pathogenesis associated with increased LDL blood levels. We have previously determined that LDL stimulation of human skin fibroblasts, used as a model system for adventitial fibroblasts, activates p38 mitogen-activated protein kinases (MAPKs), followed by IL-8 production and increased wound-healing capacity of the cells. The proximal events triggering these responses had not been characterized, however. Here we show that MAPK kinases MKK3 and MKK6, but not MKK4, are the upstream kinases responsible for the activation of the p38 MAPKs and stimulation of wound closure in response to LDLs. Phosphoinositide 3 kinases (PI3Ks) and Ras have been suggested to participate in lipoprotein-induced MAPK activation. However, specific PI3K inhibitors or expression of a dominant-negative form of Ras failed to blunt LDL-induced p38 MAPK activation. The classical LDL receptor does not participate in LDL signaling, but the contribution of other candidate lipoprotein receptors has not been investigated. Using cells derived from scavenger receptor class B type I (SR-BI) knockout mice or the BLT-1 SR-BI inhibitor, we now show that this receptor is required for LDLs to stimulate p38 MAPKs and to promote wound healing. Identification of MKK3/6 and SR-BI as cellular relays in LDL-mediated p38 activation further defines the signaling events that could participate in LDL-mediated pathophysiological responses.  相似文献   

17.
Members of the Src family of non-receptor tyrosine kinases play a critical role in mesoderm formation in the frog, Xenopus laevis, acting as required mediators downstream of the fibroblast growth factor receptor. At least four members of this gene family, Src, Fyn, Yes, and Laloo, are expressed during early embryonic development. Ectopic expression of Laloo and Fyn, but not Src, induce mesoderm in ectodermal explants, indicating that these factors are non-redundant during early vertebrate development. Here we investigate the basis for the differential activity of the Src and Laloo kinases during mesoderm formation. We demonstrate that although both Src and Laloo physically interact with the substrate protein SNT-1/FRS2alpha only Laloo phosphorylates SNT-1, an event previously shown to be required for the activity of the latter and for mesoderm induction in vivo. We show that Src is enzymatically capable of stimulating mesoderm formation, as an activated Src construct both phosphorylates SNT-1 and induces mesoderm in explant cultures. However, a chimeric Laloo construct containing a Src C-terminal tail is inactive, suggesting that the early embryo contains a specific Laloo-activating, or Src-inactivating, factor. Finally, through further chimeric analysis, we provide evidence to suggest that differences in Laloo and Src activity are also mediated by the SH2, SH3, and kinase domains of these molecules.  相似文献   

18.
Wang J  Li S  Chen Y  Ding X 《Developmental biology》2007,304(2):836-847
The vertebral column is derived from somites, which are transient segments of the paraxial mesoderm that are present in developing vertebrates. The strict spatial and temporal regulation of somitogenesis is of crucial developmental importance. Signals such as Wnt and FGF play roles in somitogenesis, but details regarding how Wnt signaling functions in this process remain unclear. In this study, we report that Wnt/beta-catenin signaling regulates the expression of Mespo, a basic-helix-loop-helix (bHLH) gene critical for segmental patterning in Xenopus somitogenesis. Transgenic analysis of the Mespo promoter identifies Mespo as a direct downstream target of Wnt/beta-catenin signaling pathway. We also demonstrate that activity of Wnt/beta-catenin signaling in somitogenesis can be enhanced by the PI3-K/AKT pathway. Our results illustrate that Wnt/beta-catenin signaling in conjunction with PI3-K/AKT pathway plays a key role in controlling development of the paraxial mesoderm.  相似文献   

19.
Fibroblast growth factor (FGF) signalling has been implicated in the generation of mesoderm and neural fates in chordate embryos including ascidians and vertebrates. In Ciona, FGF9/16/20 has been implicated in both of these processes. However, in FGF9/16/20 knockdown embryos, notochord fate recovers during later development. It is thus not clear if FGF signalling is an essential requirement for notochord specification in Ciona embryos. We show that FGF-MEK-ERK signals act during two distinct phases to establish notochord fate. During the first phase, FGF signalling is required during an asymmetric cell division to promote notochord at the expense of neural identity. Consistently, ERK1/2 is specifically activated in the notochord precursors following this cell division. Sustained activation of ERK1/2 is then required to maintain notochord fate. We demonstrate that FGF9/16/20 acts solely during the initial induction step and that, subsequently, FGF8/17/18 together with FGF9/16/20 is involved in the following maintenance step. These results together with others' show that the formation of a large part of the mesoderm cell types in ascidian larvae is dependent on signalling events involving FGF ligands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号