首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the distribution of seven heavy metals and As in typical municipal greenbelt roadside soils in Pudong New District, Shanghai, China. As and Ni showed no significant accumulation compared with the background values of the local soils, but there was strong evidence of accumulation of Cd, Cr, Cu, Hg, Pb and Zn in the roadside soils. However, only Zn and Cd contents were higher than the pollution thresholds of the Chinese National Soil Quality standard. The concentrations of heavy metal(loid)s in the soils were significantly affected by the length of time since the roads were constructed. Soils from areas adjacent to an older road had higher levels of Cu, Pb, Cd and Zn. In terms of spatial distribution, more Cd, Cu, Pb and Zn were found in the soil from the green areas of median between carriageways than from those of the roadside verges. Vertical distribution analysis shows that the contents of Pb, Cd, Cu and Zn had maximum values in the topsoil and were substantially lower in the deeper layers of the soil profile. Moreover, correlation analysis reveals that these four heavy metals originated from the same pollution sources and their contents were directly associated with the traffic density.  相似文献   

2.
为研究交通运输造成的重金属污染特征及潜在生态风险,选取兰州市某交通干道,利用原子吸收分光光度计检测了金属元素的含量,并利用单因子指数法和潜在生态风险指数法评价了土壤污染程度和潜在生态风险,进而分析了土壤重金属污染对绿化植物叶绿素和Ca含量的影响。结果表明: 城市交通导致土壤重金属Cr、Mn、Zn、Cu和Ni的含量均显著增高,且Cr、Pb和Cu达到了中度污染,潜在生态风险排序为Cu>Pb>Cr>Ni>Zn>Mn;槐树、月季、紫叶李和冬青卫矛对交通源重金属Pb、Mn、Zn、Ni等表现出不同程度的积聚作用;落叶植物槐树、月季和紫叶李叶片中叶绿素含量表现为路侧采样点>对照点,而常绿植物冬青卫矛和侧柏的叶绿素含量为对照点>路侧采样点,所有绿化植物叶片中Ca含量表现为路侧采样点>对照点,高的叶绿素和Ca含量可能有利于绿化植物在土壤重金属污染环境中生存。交通运输导致研究区域土壤中重金属Cr、Mn、Zn、Cu和Ni等的积累;槐树、月季、紫叶李和冬青卫矛等对Pb、Mn、Zn和Ni具有不同程度的积聚作用,可推荐为相应重金属污染土壤绿化植物。  相似文献   

3.
南京市城乡公路蜀桧叶片中金属元素和氮、硫含量分析   总被引:15,自引:0,他引:15  
通过对南京市城乡公路(城市干线、绕城公路和城郊公路)和相对清洁对照点植物园环境中土壤和蜀桧叶片中金属元素和N、S含量的测定,研究了环境元素在土壤植物大气之间的转移.结果表明,在城市干线、绕城公路和城郊公路环境中生长的蜀桧叶片中,10种金属元素中有Al、Fe、Mo、Zn、Cd、Pb、As和Cr含量明显超过对照点,其中尤以Al、Fe、Mo和Zn最显著.公路环境蜀桧叶片中,Fe、Zn和As在土壤植物间的相关性显著,说明蜀桧可能是Fe、Zn和As的良好指示植物;蜀桧叶片中Al、Mo、Cu、Pb、Cd和Cr在土壤植物间相关性不显著,说明公路环境中其含量较高可能是受大气污染的影响.城市干线和绕城公路蜀桧叶片中的N和S含量高于对照点,而城郊公路则接近对照.相关分析表明,公路土壤含N量在土壤植物间呈负相关,低于对照,含S量在土壤植物间呈正相关,高于对照.因此,公路环境蜀桧叶片中较高的N含量可能是汽车尾气排放的NOx影响的结果,而较高的S含量则主要来自土壤.  相似文献   

4.
不同土地利用方式对城市土壤质量的影响   总被引:15,自引:0,他引:15  
通过对兰州市西固区种土地利用类型(工业园区、道路两侧、农业、居民区和公园)320个土壤样品的测试,研究了不同土地利用方式对城市土壤理化性状和Pb、Zn、Cd、Cu、Hg元素积累的影响.在种类型土壤中,工业园区土壤的pH值最低而电导率最高,道路两侧土壤有机碳含量显著高于居民区、公园和农业土壤;Pb、Zn、Cu、Cd和Hg的含量在种类型土壤中存在显著差异,并明显高于兰州市土壤背景值;计算得到的工业园区、道路两侧、农业、居民区和公园土壤的内梅罗综合污染指数分别为4.9、3.7、4.0、2.4和2.2.结果表明,不同土地利用方式对城市土壤质量的影响不同,工业活动的影响最大,交通污染次之,再依次为农业活动及居民生活.  相似文献   

5.
某农药工业园区周边土壤重金属含量与风险评价   总被引:11,自引:0,他引:11  
Shi NN  Ding YF  Zhao XF  Wang QS 《应用生态学报》2010,21(7):1835-1843
以苏南某农药工业园区周边30km2区域为研究区,采用同心圆法采集土壤样品183个,分析了农药工业园区周边土壤Cd、Cr、Cu、Ni、Pb、Zn、Hg和As8种重金属含量、空间变异性、来源及潜在风险.结果表明:以自然背景值为评价标准,研究区表层土壤Hg、Cu、Cd和Pb平均含量超过自然背景值,其中Hg和Cu含量最高;以国标二级标准为评价标准,土壤Cd、Cr、Ni、Pb、Zn、As6种重金属的单项污染指数平均值均小于1,Hg和Cu分别为1.59和1.05.在农药工业园区周边土壤重金属污染较重的东南方向和西北方向,随着与园区距离的增加,土壤Cd、Ni、Pb、Cr、As、Hg、Zn和Cu含量先上升、后下降、再趋于平稳.通过分析农药工业园区周边土壤重金属综合污染指数发现,距离园区约200~1000m周边土壤污染的风险较大,而1000m以外逐渐达到安全范围.利用地统计学和GIS相结合进行分析发现,8种重金属污染指数有明显的空间变异.依据相关分析与主成分分析结果推测,Zn、Ni、Cr、Pb和As主要来源于成土母质,而Hg、Cu和Cd主要与人类活动有关.  相似文献   

6.
为探讨油茶(Camellia oleifera)产地土壤和油茶果实中金属元素分布和富集特征,在油茶果实成熟期,对浙江5个油茶产地土壤及油茶果实中金属元素进行污染分析和富集能力评价。结果表明,浙江油茶产地土壤中Pb、Cr、Cd、As、Hg、Ni、Cu和Zn含量低于农用地土壤污染风险筛选值,综合污染等级为安全。个别产区常山县土壤中As、Ni、Cu和江山县土壤中Pb、Cr、Fe含量显著高于其他产地;常山和建德土壤中Cd单因子污染指数分别为0.93和0.81,处于污染警戒线。Cr、Ni、Cu、Zn主要分布在油茶籽中,Hg主要分布在壳中,Pb、Cd、As、Fe和Mn主要分布在青皮中。油茶籽中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Ni、Zn的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As和Hg的富集系数小于0.1,吸收能力低;壳中Cu、Mn的富集系数大于0.4,吸收能力强,Fe的富集系数小于0.4,具有一定吸收能力,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低;青皮中Cu、Fe、Mn的富集系数大于0.4,吸收能力强,Pb、Cr、Cd、As、Hg、Ni、Zn的富集系数小于0.1,吸收能力低。浙江油茶主产区土壤质量安全,适合油茶种植。油茶果实对Cu、Fe、Mn有一定富集能力,对Pb、Cr、Cd、As和Hg无富集能力。  相似文献   

7.
在对广州市花都城区绿地土壤取样调查的基础上,采用全国第二次土壤普查养分分级标准和内梅罗污染指数法等对其土壤肥力和重金属污染情况进行分析评价,揭示花都城区绿地土壤存在的问题。结果表明,花都城区绿地土壤容重变幅在1.25~1.75 g·cm–3之间,孔隙度变幅在30.81%~47.42%之间,pH在6.16~7.68之间,有机质含量在四级及以下标准,严重缺乏氮素和磷素。不同绿地类型中,厂区路旁绿地土壤重金属污染最严重,其次为主干道两侧绿地;研究区As污染最严重,Pb次之,未受Zn污染,存在不同程度的Cu、Cd、Cr、Ni、Hg污染。相关性分析表明,土壤pH与全钾、碱解氮含量极显著相关,有机质与全氮极显著相关,全氮、全磷分别与碱解氮、有效磷显著正相关,全钾与碱解氮显著负相关;重金属元素中,Cu与Zn、Cr、Ni极显著相关,Zn与Cu、Pb、Cd、Cr、Ni极显著相关,Pb与Zn、Cd极显著相关,Cr与Cu、Zn、Ni极显著相关,As和Hg与其他重金属元素均无显著相关性。  相似文献   

8.
To understand the effect of intense human activities in suburbs on environmental quality, we obtained 758 measurements of the heavy metals in certain farmland soils of the Beijing suburbs. Multivariate statistical analysis and geostatistical analysis were used to conduct a basic analysis of the heavy metal concentrations, the distribution characteristics and the sources of pollution of the farmland soils in these suburbs. The results showed the presence of eight heavy metals in the agricultural soils at levels exceeding the background values for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. In particular, all the measured Cr concentrations exceeded the background value, while As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were present at 1.13, 1.68, 1.95, 1.43, 1.63, 0.79, 0.92 and 1.36 times their background values, respectively. The results of correlation, factor and spatial structure analyses showed that Cd, Cu, Pb and Zn were strongly homologous, whereas Cr and Hg showed a degree of heterogeneity. The analysis further indicated that in addition to natural factors, Cd, Cu, Pb and Zn in the soil were mainly associated with distribution from road traffic and land use status. Different agricultural production measures in the various areas were also important factors that affected the spatial distribution of the soil Cr concentration. The major sources of Hg pollution were landfills for industrial waste and urban domestic garbage, while the spatial distribution of As was more likely to be a result of composite pollution. The regional distribution of the heavy metals indicated that except for Cr and Hg, the high heavy metal levels occurred in districts and counties with higher organic matter concentrations, such as the northwestern and southeastern suburbs of Beijing. There was no significant Ni pollution in the agricultural soils of the Beijing suburbs.  相似文献   

9.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

10.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

11.
以南京市常见行道树二球悬铃木为试材,研究了交通繁忙区和相对清洁区道路两边悬铃木叶内6种重金属元素的亚细胞分布及其区隔化效应.结果显示:交通污染区悬铃木叶内各亚细胞组分中Cr、Cu、Ni、Pb和Zn 5种重金属元素的含量均明显高于对照区,交通空气污染是影响其含量增加的主要原因之一.相对清洁区和交通污染区5种重金属元素在悬铃木叶片、叶柄的细胞壁组分中含量最高,胞外隔离系数和污染指数均大于0.900,细胞壁是大气重金属元素重要的吸滞器官,并对重金属有明显的阻隔效应;胞内细胞器对Pb和Cu的隔离系数和污染指数最大,细胞器双层膜能在一定程度上抵御重金属元素进入细胞内.悬铃木叶片和叶柄亚细胞组分的污染指数表现为胞质组分>细胞壁组分>细胞器组分,即包括液泡液在内的胞质组分是囤积重金属元素的场所.研究表明,悬铃木叶片、叶柄各亚细胞组分对重金属均有不同程度的累积能力,叶内胞质组分的囤积作用以及细胞壁、质膜与细胞器双层膜的区隔化作用可能是悬铃木叶解除重金属元素毒害的重要原因.  相似文献   

12.
This study evaluates the amount and distribution of Pb and Cd in roadside soils adjacent to two main roads in Irbid, Jordan, from October 2001 to July 2002. A total of 260 samples were collected from Irbid-Howara Street and Yarmouk University Street. Lead and Cd content were measured using Graphite Furnace Atomic Absorption Spectrometry. The environmental significance of this study is discussed in terms of the influence of traffic density on Pb and Cd concentrations in roadside soils, and enrichment factors were calculated to evaluate the degree of pollution. The accuracy of the results obtained has been examined and two standard reference materials, CRM 142 R (soil) and SRM 2709 (soil), were analyzed to confirm the accuracy of the results. The precision of the measurements was assessed in terms of relative standard deviation (RSD) using five replicate analyses of samples collected from the roadside sites. RSD values for Pb and Cd were found to be less than 6%. The overall Pb concentration in roadside soil samples was 325 and 431 μg g?1 for Pb and 1.142 and 1.135 μg g?1 for Cd in Yarmouk University Street and Irbid-Houwa Street, respectively. Results indicated that levels of Pb and Cd were decreasing as the distance from the road increases. Enrichment factor results were 655 and 826 for Pb, and 252 and 237 for Cd in Yarmouk University Street and Irbid-Houwa Street, respectively.  相似文献   

13.
Concentrations of Pb, Zn, Cd, Cu, Cr, Co, and Ni were determined in roadside topsoil collected from locations of varied vehicular traffic densities in the city of Ibadan, Nigeria, with a view to determining the level of contamination and the contribution of traffic density. Levels of Pb, Zn, Cd, and Cu were elevated above background concentrations measured in control areas. Average values (ppm) for all sample locations were Pb — 81±140; Zn — 48±37; Cd — 0.55±0.49; Cu — 17±17; Cr — 22.1±9.6; Co — 7.9±3.8; Ni — 10.5±9.7. Factors of accumulation of metals in roadsides relative to control sites were highest for Pb. Vehicular traffic was not an important source of chromium, cobalt and nickel, for which roadside concentrations were about those of the control sites. Metal concentrations were poorly correlated with traffic volumes. An average of about 60% of total soil concentration of the metals were determined to be held in bioavailable geochemical phases, of which the highest concentrations were mostly held in either the reducible or oxidizable phase. Levels of the metals in the topsoil were generally lower than the soil quality criteria of some developed countries.  相似文献   

14.
Abstract

The aim of this study was to quantify the pollution level of toxic elements, their ecological risk and human health hazard in the agricultural soil of Tiantai County, Zhejiang province. A total of 2651 soil samples were collected and analyzed for 13 toxic elements using different analytical techniques. The concentration of Cd, Pb, Hg, Mn, and Zn was higher than the Zhejiang background value in more than 50% of samples. Enrichment factor showed that As, Cd, Hg, Mo, Pb, Se, V, and Zn were anthropogenically loaded and most of the toxic elements showed poor spatial distribution. Nemerow pollution index showed that Chicheng, Shiliang, Pingqiao, Tantou, and Youngxi towns were seriously polluted by toxic elements. Principal component analysis and cluster analysis showed that Co, Cr, Ni, and Cu, whereas, Cd, Pb, and Zn shared the similar source of origin. A large area of Tiantai County experiencing moderate to a serious level of pollution but most of the toxic elements exhibit low risk to the environment except Cd and Hg. Furthermore, children were more prone to health hazards than adults with following order: As?>?Cr?>?Pb?>?Mn. Overall, As and Pb were prominent for pollution, ecological risk, and human health hazards.  相似文献   

15.
按离路基不同距离采集土壤、麦苗和籽粒样品, 在测定样品重金属 (Pb、Cd、Zn、Cr和Cu) 的基础上, 开展了路旁土壤-小麦系统重金属分布、积累和污染状况分析, 并对膳食小麦 (Triticumaestivum) 引起的健康风险进行了评价。结果表明:1) 土壤-小麦系统重金属含量随着离开路基距离的增加呈先增加后减少的趋势, 土壤重金属含量>麦苗重金属含量>籽粒重金属含量。2) 麦苗和小麦籽粒对土壤重金属富集能力的大小顺序均为Cu>Cd>Zn>Pb>Cr, 麦苗对重金属的富集能力大于小麦籽粒。3) 膳食小麦所致的Cd个人健康风险较大。  相似文献   

16.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

17.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

18.
The concentrations of Pb, Cu, Fe, and Mn were analyzed in surface deposit and tissue ofQuercus ilex leaves from several sites of the urban area of Naples, exposed to different degrees of air pollution. These included some major roads with heavy traffic loads, squares, and three urban parks. The soil from the trunk base area ofQ. ilex trees in the same sites was also analyzed for total and available metal contents. Pb, Cu, and Fe contents in the surface deposit and leaf tissue were significantly higher (p<0.01) in leaves from roadside sites than in leaves from parks; significant correlations were found between deposit- and tissue-contents of Pb, Cu, and Fe. Mn content in leaves from roadside sites and in leaves from parks were similar and Mn content in the leaf deposit was irrelevant. Significant differences (p<0.001) in both total and available Pb and Cu soil content were found between sampling sites. Also for available Fe and Mn soil content differences among sites were relevant, although the highest values were measured in soil from urban parks. A positive correlation between leaf and soil metal content was found only for Pb, thus suggesting that trace metal contents of leaves directly depend on atmospheric depositions. Seasonal variations of Pb, Cu, and Fe were pronounced at a polluted site, whereas no relevant seasonal variation was observed at a control site; moreover, metal accumulation was high at the polluted site. Mn content and seasonal dynamics were comparable at control and polluted sites.  相似文献   

19.
王爱霞  方炎明 《广西植物》2017,37(4):470-477
该研究选取杭州市2个污染区常见的6种绿化树种叶片作为材料,以清洁区为对照,采用电感耦合等离子体发射光谱法,测定受试树种叶内及对应样点降尘、土壤中Pb、Cd、Cr、Cu、Ni和Zn的含量,分析叶片的吸污能力以及重金属含量与土壤、降尘的相关性。结果表明:(1)污染区树种重金属含量明显高于对照区,绿化树种对环境重金属污染物有一定的吸收能力,重金属含量在不同的树种中具有明显差异;所测树种叶内Zn含量最大,Pb次之,Cd最小,指示能力则以枸骨(Ilex cornuta)对Cd和Pb、圆柏(Juniperus chinensis)对Cu、茶花(Camellia japonica)对Ni、广玉兰(Magnolia grandiflora)对Zn为最强。(2)3个样点树种叶片与对应样点土壤、降尘中重金属元素含量的相关性分析和回归分析表明,叶片重金属含量与土壤重金属含量的相关性较小,而与降尘呈显著正相关。因此,绿化树种叶片作为空气重金属污染的累积器和监测器是科学合理的,且上述4种树种对杭州市空气中6种重金属污染的指示作用具有一定参考价值,可作为监测城市空气质量的特型树种。该研究结果为减少城市空气重金属污染提供了科学依据和理论支持。  相似文献   

20.
In this study, 30 soil samples were collected from 0–5 cm and 15–20 cm depths in the vicinity of the Miduk Porphyry Copper Mine in Kerman Province, southeast Iran. The samples were analyzed for total concentrations of eight potentially toxic elements. The bioavailability of trace elements is determined using sequential extraction analysis. Average concentrations of As, Cd, Cr, Cu, Mo, Ni, Pb, and Zn in soil samples are 26.9, 0.49, 56.31, 201.18, 1.77, 45.6, 83.87, and 191.94 mg kg?1, respectively. Also, to assess the bioaccumulation of the analyzed elements, the roots and the leaves of three plant species were sampled and analyzed. The mobility of the analyzed trace elements shows the following decreasing order: Cd > Mo > Ni > Zn > Cu > Cr >Pb> As. The distribution pattern of elements indicates that elemental concentration in Miduk soils is highly influenced by bedrock composition, while soil pollution is mostly affected by ancient mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号