首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator‐mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype.  相似文献   

2.
It has often been suggested that selection on floral traits in hermaphroditic plants should occur primarily through differences in male fitness. However, measurements of selection on floral traits through differences in lifetime male fitness have been lacking. We measured selection on a variety of wild radish floral traits using lifetime male fitness measures derived from genetic paternity analysis. These male fitness estimates were then combined with estimates of lifetime female fitness of the same plants to produce measurements of selection based on lifetime total fitness. Contrary to the prediction above, there was no strong evidence for selection on floral morphology through male fitness differences in any of the three years of the study, but there was strong selection for increased flower size through female fitness differences in one year. The main determinant of both male and female fitness in all years was flower number; this lead to moderately positive correlations between male and female fitness in all three years.  相似文献   

3.
Genetic variances, heritabilities, and genetic correlations of floral traits were measured in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae). A paternal half-sib design was employed to generate seeds in each of four years, and seeds were planted back in the field near the parental site. The progeny were followed for up to eight years to estimate quantitative genetic parameters subject to natural levels of environmental variation over the entire life cycle. Narrow-sense heritabilities of 0.2–0.8 were detected for the morphometric traits of corolla length, corolla width, stigma position, and anther position. The proportion of time spent by the protandrous flowers in the pistillate phase (“proportion pistillate”) also exhibited detectable heritability of near 0.3. In contrast, heritability estimates for nectar reward traits were low and not significantly different from zero, due to high environmental variance between and within flowering years. The estimates of genetic parameters were combined with phenotypic selection gradients to predict evolutionary responses to selection mediated by the hummingbird pollinators. One trait, corolla width, showed the potential for a rapid response to ongoing selection through male function, as it experienced both direct selection, by influencing pollen export, and relatively high heritability. Predicted responses were lower for proportion pistillate and corolla length, even though these traits also experienced direct selection. Stigma position was expected to respond positively to indirect selection of proportion pistillate but negatively to selection of corolla length, with the net effect sensitive to variation in the selection estimates. Anther position also was not directly selected but could respond to indirect selection of genetically correlated traits.  相似文献   

4.
Measures of selection on floral traits in flowering plants are often motivated by the assumption that pollinators cause selection. Flowering plants experience selection from other sources, including herbivores, which may enhance or oppose selection by pollinators. Surprisingly, few studies have examined selection from multiple sources on the same traits. We quantified pollinator-mediated selection on six floral traits of Lobelia cardinalis by comparing selection in naturally and supplementally (hand-) pollinated plants. Directional, quadratic and correlational selection gradients as well as total directional and quadratic selection differentials were examined. We used path analysis to examine how three herbivores--slugs, weevils and caterpillars--affected the relationship between floral traits and fitness. We detected stronger total selection on four traits and correlational selection (γ(ij)) on three trait combinations in the natural pollination treatment, indicating that pollinators caused selection on these traits. Weak but statistically significant selection was caused by weevil larvae on stem diameter and anther-nectary distance, and by slugs on median-flower date. In this study, pollinators imposed stronger selection than herbivores on floral traits in L. cardinalis. In general, the degree of pollen limitation and rate of herbivory are expected to influence the relative strength of selection caused by pollinators or herbivores.  相似文献   

5.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

6.
Correlations between phenotypic traits are common in many organisms, but the relative importance of nonadaptive mechanisms and selection for the evolution and maintenance of such correlations are poorly understood. In polymorphic species, morphs may evolve quantitative differences in additional characters as a result of morph‐specific selection. The perennial rosette herb Primula farinosa is polymorphic for scape length. The short‐scaped morph is less damaged by grazers and seed predators but is more strongly pollen limited than the long‐scaped morph. We examined whether morph‐specific differences in biotic interactions are associated with differences in selection on two other traits affecting floral display (number of flowers and petal size) and on one trait likely to affect pollination efficiency (corolla tube width) in three P. farinosa populations. Differences in selection between morphs were detected in one population. In this population, selection for more flowers and larger petals was stronger in the short‐scaped than in the long‐scaped morph, and although there was selection for narrower corolla tubes in the short‐scaped morph, no statistically significant selection on corolla tube width could be detected in the long‐scaped morph. In the study populations, the short‐scaped morph produced more and larger flowers and wider corolla tubes. Current morph‐specific selection was thus only partly consistent with trait differences between morphs. The results provide evidence of morph‐specific selection on traits associated with floral display and pollination efficiency, respectively.  相似文献   

7.
Although the role of natural selection in the evolution of floral traits has been of great interest to biologists since Darwin, studies of selection on floral traits through differences in lifetime fitness have been rare. We measured selection acting on flower number, flower size, stigma exsertion, and ovule number per flower using field data on lifetime female fitness (seed production) in wild radish, Raphanus raphanistrum. The patterns of selection were reasonably consistent across three field seasons, with strong directional selection for increased flower production in all three years, weaker selection for increased ovule number per flower in two years, and selection for increased flower size in one year. The causes of the selection were investigated using path analysis combined with multiplicative fitness components. Increased flower production increased fruit production directly, and increased numbers of ovules per flower increased the number of seeds per fruit in all three years; pollinator visitation did not influence either of these fitness components. Increased flower size was associated with increases in both the number of fruit and the number of seeds per fruit in one year, with the latter relationship being stronger. Total lifetime seed production was affected more strongly by differences in fruit production than by differences in either the number of seeds per fruit or the proportion of fertilized seeds that were viable, but all three fitness components were positively correlated with total seed production.  相似文献   

8.
Understanding the mechanisms of adaptive population differentiation requires that both the functional and adaptive significance of divergent traits are characterized in contrasting environments. Here, we (a) determined the effects of floral spur length on pollen removal and receipt using plants with artificial spurs representing the species-wide variation in length, and (b) quantified pollinator-mediated selection on spur length and three traits contributing to floral display in two populations each of the short-spurred and the long-spurred ecotype of the orchid Platanthera bifolia. Both pollen receipt and removal reached a maximum at 28–29 mm long spurs in a short-spurred population visited by short-tongued moths. In contrast, pollen receipt increased linearly across the tested range (4–52 mm) and pollen removal was unrelated to spur length in a long-spurred population predominantly visited by a long-tongued moth. The experimentally documented effects on pollen transfer were not reflected in pollinator-mediated selection through female fitness or pollen removal indicating that the natural within-population variation in spur length was insufficient to result in detectable variation in pollen limitation. Our study illustrates how combining trait manipulation with analysis of causes and strength of phenotypic selection can illuminate the functional and adaptive significance of trait expression when trait variation is limited.  相似文献   

9.
Identifying traits and agents of selection involved in local adaptation is important for understanding population divergence. In southern Sweden, the moth‐pollinated orchid Platanthera bifolia occurs as a woodland and a grassland ecotype that differ in dominating pollinators. The woodland ecotype is taller (expected to influence pollinator attraction) and produces flowers with longer spurs (expected to influence efficiency of pollen transfer) compared to the grassland ecotype. We examined whether plant height and spur length affect pollination and reproductive success in a woodland population, and whether effects are non‐additive, as expected for traits influencing two multiplicative components of pollen transfer. We reduced plant height and spur length to match trait values observed in the grassland ecotype and determined the effects on pollen removal, pollen receipt, and fruit production. In addition, to examine the effects of naturally occurring variation, we quantified pollinator‐mediated selection through pollen removal and seed production in the same population. Reductions of plant height and spur length decreased pollen removal, number of flowers receiving pollen, mean pollen receipt per pollinated flower, and fruit production per plant, but no significant interaction effect was detected. The selection analysis demonstrated pollinator‐mediated selection for taller plants via female fitness. However, there was no current selection mediated by pollinators on spur length, and pollen removal was not related to plant height or spur length. The results show that, although both traits are important for pollination success and female fitness in the woodland habitat, only plant height was sufficiently variable in the study population for current pollinator‐mediated selection to be detected. More generally, the results illustrate how a combination of experimental approaches can be used to identify both traits and agents of selection.  相似文献   

10.
There is discussion over whether pollen limitation exerts selection on floral traits to increase floral display or selects for traits that promote autonomous self‐fertilization. Some studies have indicated that pollen limitation does not mediate selection on traits associated with either pollinator attraction or self‐fertilization. Primula tibetica is an inconspicuous cross‐fertilized plant that may suffer from pollen limitation. We conducted a selection analysis on P. tibetica to investigate whether pollen limitation results in selection for an increased floral display in case the evolution of autonomous self‐fertilization has been difficult for this plant. The self‐ and intra‐morph incompatibility features, the capacity for autonomous self‐fertilization, and the magnitude of pollen limitation were examined through hand‐pollination experiments. In 2016, we applied selection analysis on the flowering time, corolla width, stalk height, flower tube length, and flower number in P. tibetica by tagging 76 open‐pollinated plants and 37 hand‐pollinated plants in the field. Our results demonstrated that P. tibetica was strictly self‐ and intra‐morph incompatible. Moreover, the study population underwent severe pollen limitation during the 2016 flowering season. The selection gradients were found to be significantly positive for flowering time, flower number, and corolla width, and marginally significant for the stalk height. Pollinator‐mediated selection was found to be significant on the flower number and corolla width, and marginally significant on stalk height. Our results indicate that the increased floral display may be a vital strategy for small distylous species that have faced difficulty in evolving autonomous self‐fertilization.  相似文献   

11.
Floral traits are hypothesized to evolve primarily in response to selection by pollinators. However, selection can also be mediated by other environmental factors. To understand the relative importance of pollinator‐mediated selection and its variation among trait and pollinator types, we analyzed directional selection gradients on floral traits from experiments that manipulated the environment to identify agents of selection. Pollinator‐mediated selection was stronger than selection by other biotic factors (e.g., herbivores), but similar in strength to selection by abiotic factors (e.g., soil water), providing partial support for the hypothesis that floral traits evolve primarily in response to pollinators. Pollinator‐mediated selection was stronger on pollination efficiency traits than on other trait types, as expected if efficiency traits affect fitness via interactions with pollinators, but other trait types also affect fitness via other environmental factors. In addition to varying among trait types, pollinator‐mediated selection varied among pollinator taxa: selection was stronger when bees, long‐tongued flies, or birds were the primary visitors than when the primary visitors were Lepidoptera or multiple animal taxa. Finally, reducing pollinator access to flowers had a relatively small effect on selection on floral traits, suggesting that anthropogenic declines in pollinator populations would initially have modest effects on floral evolution.  相似文献   

12.
Darwin recognized the flower's importance for the study of adaptation and emphasized that the flower's functionality reflects the coordinated action of multiple traits. Here we use a multitrait manipulative approach to quantify the potential role of selection acting on floral trait combinations underlying the divergence and maintenance of three related North American species of Silene (Caryophyllaceae). We artificially generated 48 plant phenotypes corresponding to all combinations of key attractive traits differing among the three Silene species (color, height, inflorescence architecture, flower orientation, and corolla‐tube width). We quantified main and interaction effects of trait manipulation on hummingbird visitation preference using experimental arrays. The main effects of floral display height and floral orientation strongly influenced hummingbird visitation, with hummingbirds preferring flowers held high above the ground and vertically to the sky. Hummingbirds also prefer traits in a nonadditive manner as multiple two‐way and higher order interaction effects were important predictors of hummingbird visitation. Contemporary trait combinations found in hummingbird pollinated S. virginica are mostly preferred. Our study demonstrates the likelihood of pollination syndromes evolving due to selection on trait combinations and highlights the importance of trait interactions in understanding the evolution of complex adaptations.  相似文献   

13.
Sexual selection is well accepted as a mechanism of shaping traits in animals. However, whether and how floral traits are sexually selected in hermaphroditic plants remains less clear. Here, we use Passiflora incarnata to address how floral traits that affect pollination success are selected via female function. We manipulated the ecological context by limiting pollination and adding resources to expand the phenotypic distribution and alter the intensity of sexual selection. Total sexual selection favoured lower style deflexion because of its impact on pollen receipt and subsequent seed number. However, total selection on style deflexion was not significant, indicating additional selection on style deflexion through routes other than mating. Limited pollination and enhanced resources were expected to alter the distribution of pollen deposition and seed production and therefore intensify the Bateman gradient – the relationship between pollen receipt and seed production. Indeed, the Bateman gradient was strongest when pollination was limited, suggesting potential for sexual selection to influence floral trait evolution under these conditions. Overall, we found floral traits may be shaped by sexual selection through female reproductive success in this hermaphroditic plant. These results support manipulations to enhance the variance in mating as a mechanism to understand patterns of sexual selection.  相似文献   

14.

Premise

Floral traits are frequently under pollinator-mediated selection, especially in taxa subject to strong pollen-limitation, such as those reliant on pollinators. However, antagonists can be agents of selection on floral traits as well. The causes of selection acting on spring ephemerals are understudied though these species can experience particularly strong pollen-limitation. I examined pollinator- and antagonist-mediated selection in a narrowly endemic spring ephemeral, Trillium discolor.

Methods

I measured pollen limitation in T. discolor across two years and evaluated its breeding system. I compared selection on floral traits (display height, petal size, petal color, flowering time) between open-pollinated, and pollen-supplemented plants to measure the strength and mode of pollinator-mediated selection. I assessed whether natural levels of antagonism impacted selection on floral traits.

Results

Trillium discolor was self-incompatible and experienced pollen limitation in both years of the study. Pollinators exerted negative disruptive selection on display height and petals size. In one year, pollinator-mediated selection favored lighter petals but in the second year pollinators favored darker petals. Antagonist damage did not alter selection on floral traits.

Conclusions

Results demonstrate that pollinators mediate the strength and mode of selection on floral traits in T. discolor. Interannual variation in the strength, mode, and direction of pollinator-mediated selection on floral traits could be important for maintaining of floral diversity in this system. Observed levels of antagonism were weak agents of selection on floral traits.  相似文献   

15.
In flowering plants, pollen limitation has been proposed to intensify selection on floral characters important in pollinator attraction, but may also select for traits that increase seed set through autonomous selfing. Here, a factorial design (+/- pollen addition, +/- pollinator removal) was used to investigate how the pollination environment affects selection on floral morphology via female fitness in a mixed-mating population of the yellow monkeyflower, Mimulus guttatus (Phrymaceae). Female fitness was strongly pollen-limited, with supplementally pollinated plants setting 37% more seeds than open-pollinated individuals. Strong positive selection was found on flower length, weak positive selection on flower width : length ratio and no selection on stigma-anther distance in both open-pollinated and supplementally pollinated treatments. By contrast, flowers with relatively narrow corollas and low stigma-anther distances were favored in the pollinator exclusion treatment. These results provide mixed support for the idea that pollen limitation intensifies selection on floral characters. Despite strong phenotypic selection, natural pollen limitation did not mediate selection on characters associated with either pollinator attraction or self-fertilization. However, the novel pattern of selection on severely pollen-limited plants suggests that reproductive assurance against pollinator loss may have been directly involved in the floral evolution of closely related selfing taxa.  相似文献   

16.
植物的花部性状在异质环境中表现出不均一的适应性进化, 其自然变异可能在时空格局上呈现一定的规律性。选择同一物种的不同地理居群进行花部表型变异分析, 能揭示花部性状随地理梯度的变异模式。海仙花报春(Primula poissonii)属于典型的二型花柱植物, 依赖昆虫传粉实现严格的型间异交。该物种广布于横断山地区亚高山-高山草甸, 其分布海拔跨度大且花部性状在种内具有较高变异, 但这些变异在不同地理梯度(海拔梯度和经纬度梯度)的特定选择因子作用下的变化规律尚不清楚。本研究选择海仙花报春16个居群, 对8个花部关键性状和二型花柱繁殖器官的互补度与海拔和经纬度的关系进行研究, 探究花部性状随地理梯度变异的模式及其潜在的选择因素。研究表明, 海仙花报春两种花型的花冠管开口大小、花药高度以及短柱花柱头高度与海拔均呈正相关, 但两种花型的花冠大小, 长柱花的花瓣长度、柱头到花冠管开口的距离, 以及短柱花的花冠管长度与海拔高度间均呈负相关, 其余性状与海拔无显著相关性。除短柱花中柱头高度以外的性状均随着纬度升高而逐渐减小。长柱花中除花药和柱头间的距离以及柱头到开口的距离外, 其余性状均随着经度的增加而减小; 短柱花的花瓣长度、花药高度以及花药和柱头间的距离随着经度的增加而变大, 其余性状均随着经度的增加而减小。繁殖器官间的互补度并不随地理环境的变化而变化。花部性状的地理变异可能受访花昆虫组成的地理变化驱动。繁殖器官间互补程度的高度保守表明非选型交配在居群二态性的维持和稳定过程中起关键作用。本研究为进一步深入开展报春花属(Primula)花部性状及其选择压力的地理变异研究奠定了基础。  相似文献   

17.
Plant-pollinator interactions promote the evolution of floral traits that attract pollinators and facilitate efficient pollen transfer. The spatial separation of sex organs, herkogamy, is believed to limit sexual interference in hermaphrodite flowers. Reverse herkogamy (stigma recessed below anthers) and long, narrow corolla tubes are expected to promote efficiency in male function under hawkmoth pollination. We tested this prediction by measuring selection in six experimental arrays of Polemonium brandegeei, a species that displays continuous variation in herkogamy, resulting in a range of recessed to exserted stigmas. Under glasshouse conditions, we measured pollen removal and deposition, and estimated selection gradients (β) through female fitness (seeds set) and male fitness (siring success based on six polymorphic microsatellite loci). Siring success was higher in plants with more nectar sugar and narrow corolla tubes. However, selection through female function for reverse herkogamy was considerably stronger than was selection through male function. Hawkmoths were initially attracted to larger flowers, but overall preferred plants with reverse herkogamy. Greater pollen deposition and seed set also occurred in reverse herkogamous plants. Thus, reverse herkogamy may be maintained by hawkmoths through female rather than male function. Further, our results suggest that pollinator attraction may play a considerable role in enhancing female function.  相似文献   

18.
Pollinator‐mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under‐explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine‐scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains.  相似文献   

19.
Abstract Although pollinator-mediated natural selection has been measured on many floral traits and in many species, the extent to which selection is constrained from producing optimal floral phenotypes is less frequently studied. In particular, negative correlations between flower size and flower number are hypothesized to be a major constraint on the evolution of floral displays, yet few empirical studies have documented such a trade-off. To determine the potential for genetic constraints on the adaptive evolution of floral displays, I estimated the quantitative genetic basis of floral trait variation in two populations of Lobelia siphilitica . Restricted maximum likelihood (REML) analyses of greenhouse-grown half-sib families were used to estimate genetic variances and covariances for flower number and six measures of flower size. There was significant genetic variation for all seven floral traits in both populations. Flower number was negatively genetically correlated with four measures of flower size in one population and three measures in the other. When the genetic variance-covariance matrices were combined with field estimates of phenotypic selection gradients, the predicted multivariate evolutionary response was less than or opposite in sign to the selection gradient for flower number and five of six measures of flower size, suggesting genetic constraints on the evolution of these traits. More generally, my results indicate that the adaptive evolution of floral displays can be constrained by tradeoffs between flower size and number, as has been assumed by many theoretical models of floral evolution.  相似文献   

20.
Measurements of natural selection in hermaphrodite populations require the analysis of performance through both female and male sex functions. Here, we investigate selection on three floral traits: flower number, flower length, and corona width through both sex functions in natural populations of the tristylous daffodil Narcissus triandrus . Selection through female function was examined in six populations, and in two of these we also estimated male selection gradients using multilocus microsatellite genotyping of parents and offspring. We detected significant directional selection for flower number through female function, and significant stabilizing selection for corona width and flower length through male function. Variation in male reproductive success was strongly influenced by the distance between mates and was significantly higher than variation in female reproductive success in one population, a result consistent with Bateman's principle. However, variation through both sex functions was similar in the other population and there was a significant negative correlation between female and male fitness indicating sex-specific trade-offs in reproductive success. Selection on floral design in N. triandrus was stronger through male than female function probably because floral morphology plays an important role in promoting effective cross-pollen transfer in populations of this heterostylous species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号