首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
In insect-pollinated plants, floral characters are expected to play an important role in paternal and maternal reproductive success. Bateman's principle states that male reproductive success increases with more mating opportunities, while female reproductive success is limited by the amount of resources available to produce progeny, thus there should be greater selection on male floral characters than on female. In the case of the dioecious plant Silene latifolia, floral characters are likely to be influenced by its association within its native European range with moths of the genus Hadena, which serve as both pollinators and seed predators. The present study addresses relationships between male and female reproductive success, spatial location and floral characters (corolla, calyx and claw) over a 2-year period in two Spanish populations of S. latifolia in the presence of Hadena moths. A maximum likelihood paternity analysis using genetic variation at six allozyme markers showed heterogeneity in male reproductive success. There was much less variation in female reproductive success. When this analysis was extended to include interplant distance as a causal factor underlying variation in male success, we found that successful pollination tended to be limited to nearby females, in accordance with exponential decay of pollen dispersal with increasing distance. When the paternity analysis included floral characters as a causal factor underlying variation in male success, our data showed little evidence for directional selection, but there was stabilizing selection in one of the two years for calyx diameter. Selection on female characters varied widely between sites and years, in most of the site/year combinations there was little selection on female floral characters; however, in one site/year there was evidence for selection on all three floral characters. We conclude that pollinators visit flowers that are close together, and that while floral characters are important for the attraction of pollinators, larger flowers do not necessarily attract more pollinators at all sites and that variation among sites and years makes difficult any conclusions about the long-term importance of the predictions suggested by Bateman's principle.  相似文献   

2.
Sex-allocation models predict that the evolution of self-fertilization should result in a reduced allocation to male function and pollinator attraction in plants. The evolution of sex allocation may be constrained by both functional and genetic factors, however. We studied sex allocation and genetic variation for floral sex ratio and other reproductive traits in a Costa Rica population of the monoecious, highly selfing annual Begonia semiovata. Data on biomass of floral structures, flower sex ratios, and fruit set in the source population were used to calculate the average proportion of reproductive allocation invested in male function. Genetic variation and genetic correlations for floral sex ratio and for floral traits related to male and female function were estimated from the greenhouse-grown progeny of field-collected maternal families. The proportion of reproductive biomass invested in male function was low (0.34 at flowering, and 0.07 for total reproductive allocation). Significant among-family variation was detected in the size (mass) of individual male and female flowers, in the proportion of male flowers produced, and in the proportion of total flower mass invested in male flowers. Significant among-family variation was also found in flower number per inflorescence, petal length of male and female flowers, and petal number of female flowers. Except for female petal length, we found no difference in the mean value of these characters between selfed and outcrossed progeny, indicating that, with the possible exception of female petal length, the among-family variation detected was not the result of variation among families in the level of inbreeding. Significant positive phenotypic and broad-sense genetic correlations were detected between the mass of individual male and female flowers, between male and female petal length, and between number of male and number of female flowers per inflorescence. The ratio of stamen-to-pistil mass (0.33) was low compared to published data for autogamous species with hermaphroditic flowers, suggesting that highly efficient selfing mechanisms may evolve in monoecious species. Our results indicate that the study population harbors substantial genetic variation for reproductive characters. The positive genetic correlation between investment in male and female flowers may reflect selection for maximum pollination efficiency, because in this self-pollinating species, each female flower requires a neighboring male flower to provide pollen.  相似文献   

3.
For plants that rely on animals for pollination, the ability to attract the animals to their flowers can be a crucial component of fitness. A large number of studies have documented pollinators to be important selective agents driving the evolution of flower size and correlated traits on a large scale. In this paper, we studied variations of reproductive traits in self-incompatible Trollius ranunculoides (Ranunculaceae) among local habitats at Alpine Meadow. The results showed significant variations of floral size, seed mass per fruit and sex allocation (male/female mass ratio) between different habitats, where floral size and seed mass was not explained fully by variation of plant size among habitats. It suggested that other factors unrelated to plant size might also influence floral variation. However, in our manipulated experiment, it showed no effects of manipulated floral size not only on visit rate of effective pollinators (bees and flies) but also on female success (seed set, seed mass per fruit), irrespective of flower density. Consequently, we could not conclude that the variation of floral size in T. ranunculoides was due to phenotypic plasticity, or natural selection. But if selection occurred, it should not be mediated by pollinators. It was likely that variation of sex allocation between habitats lead to changes of flower or corolla size, because plant invested much less to male function (female-biased sex allocation and larger single seed mass) in shade habitat (bottom of bush) than other exposed habitats, to gain higher fitness. In addition, high-floral density in T. ranunculoides had a negative effect on service of main pollinator (bees) and female success. This situation would influence the strength of selection on floral size.  相似文献   

4.
I measured phenotypic selection of floral traits through both male and female functions of the hermaphroditic flowers of Ipomopsis aggregata (Pursh) V. Grant subsp. aggregata (Polemoniaceae). Fluorescent powdered dyes were used to track movement of pollen by hummingbirds and to measure pollen delivery to individual plants as well as pollen receipt. A phenotypic selection analysis revealed that selection due to male-male competition during pollination was capable of delaying flowering date and widening corolla tubes by 0.22 and 0.24 standard-deviation units, respectively, in a single generation. Several floral traits were highly correlated with each other. Multivariate selection analysis suggested that selection through male function directly favored late flowering as well as a sexual expression characterized by a short pistillate phase and long corollas. Selection intensities through male and female functions were of similar overall magnitude during the pollination stage of the life cycle, but different traits were favored, and selection sometimes acted in opposing directions. In 1985, selection through female function favored increased time spent in the pistillate phase and exserted stigmas (unlike selection through male function). As a result, individual plants varied greatly in functional gender. Plants that had exserted stigmas and narrow corollas and that spent a disproportionately long time in the pistillate phase achieved greater pollination success as females, while plants with the opposite traits achieved greater success as males. Moreover, female pollination success tended to increase, and male pollination success to decrease, with time spent in the pistillate phase, supporting a critical assumption of sex-allocation theory. Selection in the populations studied fluctuated from year to year and was highly sex-specific.  相似文献   

5.
Variation among the leaves, flowers or fruit produced by a plant is often regarded as a nuisance to the experimenter and an impediment to selection. Here, we suggest that within‐plant variation can drive selection on other plant‐level traits. We examine within‐plant variation in floral sex allocation and in fruit set and predict that such variation generates variation in male success among plants, thereby driving selection on flowering time. We tested this prediction in a simulation model estimating selection on flowering time through male fitness when floral sex allocation and/or fruit set vary directionally among flowers on plants. We parameterized the model through a quantitative literature survey of within‐plant change in sex allocation. As predicted, within‐plant variation in floral sex allocation and in fruit set probability can generate selection on flowering time through male fitness. Declining fruit set from first to last flowers on plants, as occurs in many species, selected for early flowering onset through male fitness. This result was robust to self‐incompatibility and to varying returns on male versus female investment. Selection caused by declining fruit set was strong enough to reverse the selection for late flowering that can be caused by intrafloral protandry. Our model provides testable predictions regarding selection on flowering time through male fitness. The model also establishes the intriguing possibility that within‐plant variation may influence selection on other traits, regardless of whether that variation is under selection itself.  相似文献   

6.
Using both multivariate and univariate regression techniques, I measured selection acting through female reproductive success in two hermaphroditic species with precise pollen placement but different pollinators: hummingbird-pollinated Lobelia cardinalis and bumblebee-pollinated L. siphilitica. Six traits were analyzed in two populations of L. cardinalis and one population of L. siphilitica: flower number, mean number of flowers open per day, inflorescence height, number of days in flower, median-flower date and nectar-stigma distance. In another study it was found that female reproductive success in one population of L. cardinalis was much less pollen limited than in the other two populations, and it was therefore expected that selection of female reproductive traits in this population would be weaker. In the univariate analyses correlations caused nearly all traits to have significant directional selection coefficients. However, in the multivariate analyses no traits in L. siphilitica experienced directional or quadratic selection. Selection acted differently in the two L. cardinalis populations. The less pollen-limited population experienced positive directional selection on flower number and median-flower date, while in the other L. cardinalis population there was positive directional selection on flower number and nectar-stigma distance and both positive directional and positive quadratic selection on height. The functional significance of floral traits in these two species and the probable effect of increased sample sizes are discussed.  相似文献   

7.
The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the “pollen-donation hypothesis” have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success.  相似文献   

8.
Sex allocation theory forecasts that larger plant size may modify the balance in fitness gain in both genders, leading to uneven optimal male and female allocation. This reasoning can be applied to flowers and inflorescences, because the increase in flower or inflorescence size can differentially benefit different gender functions, and thus favour preferential allocation to specific floral structures. We investigated how inflorescence size influenced sexual expression and female reproductive success in the monoecious Tussilago farfara, by measuring patterns of biomass, and N and P allocation. Inflorescences of T.?farfara showed broad variation in sex expression and, according to expectations, allocation to different sexual structures showed an allometric pattern. Unexpectedly, two studied populations had a contrasting pattern of sex allocation with an increase in inflorescence size. In a shaded site, larger inflorescences were female-biased and had disproportionately more allocation to attraction structures; while in an open site, larger inflorescences were male-biased. Female reproductive success was higher in larger, showier inflorescences. Surprisingly, male flowers positively influenced female reproductive success. These allometric patterns were not easily interpretable as a result of pollen limitation when na?vely assuming an unequivocal relationship between structure and function for the inflorescence structures. In this and other Asteraceae, where inflorescences are the pollination unit, both male and female flowers can play a role in pollinator attraction.  相似文献   

9.
Here we test whether the potential exists for the independent evolution of allocation to male, female, and attractive functions within a flower. We employed half-sib and parent-offspring regression methods in the tristylous plant Lythrum salicaria to determine whether there is additive genetic variation for characters important to male and female reproductive success and whether genetic correlations could constrain the independent evolution of male and female function. Although significance levels were not consistent among morph types or between populations, there were significant narrow-sense heritabilities for several traits including stamen mass, pistil mass, perianth mass, petal length, and calyx length. Traits that might be under strong stabilizing selection to promote specific pollen transfer, such as stamen and style lengths, had little heritable variation. In the majority of cases in which heritable variation was present, there were positive genetic correlations among floral traits. A strong positive genetic correlation appeared between stamen and pistil mass in the short-styled morph from one of the populations studied. This suggests that selection might not be able to act independently on biomass allocation to male and female flower parts. No evidence of negative genetic correlations appeared that would suggest trade-offs and that could augment a selection response towards sexual specialization. The observed positive correlations could be explained if we consider the “functional architecture” that underlies the covariance structure. If there is more covariance generated by pleiotropic loci controlling overall flower size than at loci controlling male versus female allocation, it could result in the observed positive covariance. At the phenotypic level, we did find significant negative partial correlations between male and female traits when flower size was controlled, but these trade-offs were among rather than within morphs.  相似文献   

10.
Understanding the fitness of plants with inflorescences requires examining variation in sex allocation among flowers within inflorescences. We examined whether differences in the duration of the male and female phases of flowering lead to variation in sex allocation and reproductive success among flowers within inflorescences. In 2002 and 2003, we quantified floral longevity, floral sex allocation, and reproductive success between the first and the second flowers within inflorescences in a protandrous species, Aquilegia buergeriana var. oxysepala. Floral longevity was greater in the first flowers than in the second ones in both years. The male phase lasted longer, and the initial number of pollen grains and the number of pollen grains removed were greater in the first flowers than in the second ones in both years. Within first flowers, the number of pollen grains removed was greater in flowers that had longer male phases, thus duration of the male phase may positively affect male reproductive success in the first flowers. The female phase lasted longer and the number of ovules was greater in the first flowers than in the second only in 2002. However, seed production per flower and female phase duration in both years were not significantly related. The variation in the number of pollen grains among flowers in this species may be caused by the variation in male phase duration.  相似文献   

11.
In sexually polymorphic species, reproductive morphology governs mating patterns and the character of negative frequency-dependent selection. If local environmental conditions cause sexual morphs to differ between populations, then frequency-dependent selection should create corresponding geographic variation in morph frequencies. We investigate this relation with a model of morph-ratio evolution and analysis of geographic variation in the heterostylous plant Narcissus triandrus. Unlike other tristylous species, N. triandrus possesses both imperfect reciprocity among morphs in sex-organ position and a self-incompatibility system that permits outcrossing within and between morphs. We sampled 137 populations throughout the Iberian Peninsula for floral-morph ratios, and measured floral morphology in 31 populations. Morph ratios exhibited three atypical features: (1) predominance of the long-styled (L) morph; (2) absence of the mid-styled (M) morph from 17.5% of populations; and (3) a negative relation between the frequencies of the L and M morphs among populations. Morph ratios varied geographically, with decreasing frequency of the M morph from the southeast to the northwest of the species' range. Much of this variation accompanied allometric change in the positions of sex organs, especially the mid-level organs, with the M morph declining in frequency and ultimately being lost in large-flowered populations. Using multivariate multiple regression, we demonstrate that variation in floral morphology among populations predicts this geographic variation in morph frequencies. Our theoretical analysis illustrates that patterns of pollen transfer governed by imperfect sex-organ reciprocity can select for unequal equilibrium morph ratios like those observed for N. triandrus. We interpret the L-biased morph ratios and the unusual morphology of N. triandrus as a consequence of its atypical intramorph compatibility system.  相似文献   

12.
Summary To document seasonal changes in the reproductive behavior of the perfect-flowered, self-incompatible mustard, Raphanus sativus L., we monitored individual survival, flower and fruit production among 58 individuals in a California population over six census dates (cohorts). Population size declined dramatically and mean individual levels of fruit set changed significantly between cohorts. The frequency distribution of flower and fruit production became increasingly skewed over the first four cohorts. The phenotypic maleness of individuals, a standardized measure of phenotypic gender, oscillated during the reproductive season, peaking in the third and fourth cohorts. We calculated a simple estimate of expected male reproductive success of each plant (the number of fruits sired on conspecifics); this estimate was a function of an individual's flower production and the fruit production of its potential mates in our sampled population. Mean expected male success did not differ significantly among cohorts; expected male success per flower did, however, change significantly among cohorts. Among individuals within each cohort, maternal fruit production and expected male success were both positively correlated with flower production throughout the season. Spearman rank correlation coefficients indicate that the strength of these associations, however, changed during the season. Linear regressions of transformed variables indicated that the shape of several fitness functions also changed over time. In addition, the amount of variation in maternal or expected paternal success explained by flower production declined over the first four cohorts. If typical of wild populations, these temporal changes in these functions suggest that measurements of the intensity of phenotypic selection on flower production will depend on when and how fitness is measured in natural populations.  相似文献   

13.
One explanation for low fruit sets in plants with hermaphroditic flowers is that total flower production by a plant is controlled primarily by selection through male function. This male function hypothesis presupposes that success in pollen donation increases more strongly with flower number than does seed set. I tested this prediction by measuring male and female components of reproductive success as functions of flower number in natural populations of the self-incompatible, perfect flowered plant, Ipomopsis aggregata. Fruit set in this hummingbird-pollinated plant averaged 4.9 to 40.3% across the 4 years of study. Both the total amount of pollen donated and the total amount received, as estimated by movement of fluorescent powdered dyes, increased linearly with number of flowers on a plant. Total seed production, however, increased disproportionately quickly because plants with larger floral displays were more likely to set at least one fruit. An estimate of the functional femaleness of a plant, based on pollen donation and seed production, increased with flower number. These results do not support the male function hypothesis.  相似文献   

14.
Sexual dimorphism is one of the most widespread and recognizable patterns of phenotypic variation in the biotic world. Sexual dimorphism in floral display is striking in the dioecious plant Silene latifolia, with males making many, small flowers compared to females. We investigated this dimorphism via artificial selection on two populations to determine whether genetic variation exists within populations for flower size and the extent of the between-sex correlation, whether a flower size and number trade-off exists within each sex, and whether pollen and ovule production vary with flower size. We selected for decreased flower size (calyx width) in females and increased flower size in males and measured the response to selection in size and correlated responses in flower dry mass, flower number, and pollen or ovule number per flower. Four bouts of selection in each of two selection programs were performed, for a total of three selection lines to decrease size, three to increase it, and two control lines. Flower size always significantly responded to selection and we always found a significant correlated response in the sex not under selection. Selection decreased but did not eliminate the sexual dimorphism in flower dry mass and number. A negative relationship between flower size and number within each sex was revealed. Whereas ovule number showed a significant correlated response to selection on flower size, pollen number did not. Our results indicate that although substantial additive genetic variation for flower size exists, the high between-sex genetic correlation would likely constrain flower size from becoming more sexually dimorphic. Furthermore, floral display within each sex is constrained by a flower size and number trade-off. Given this trade-off and lack of variation in pollen production with flower size, we suggest that sexual dimorphism evolved via sexual selection to increase flower number in males but not females.  相似文献   

15.
Relative allocation of resources to growth vs. reproduction has long been known to be an important determinant of reproductive success. The importance of variation in allocation to different structures within reproductive allocation is somewhat less clear. This study was designed to elucidate the importance of allocation to vegetative vs. reproductive functions, and allocation within reproductive functions (sex allocation), to realized female success in an andromonoecious plant, Solanum carolinense. Allocation measurements were taken on plants in experimental arrays exposed to natural pollination conditions. These measurements included total flower number, the proportion of flowers that were male, flower size, and vegetative size. Flower number explained the majority of the variation among individuals in their success-that is, there was strong selection for increased flower production. There was also selection to decrease the proportion of flowers that were male, but neither flower size nor vegetative size (a measure of overall resource availability) were direct determinants of female success. After Bonferroni corrections for multiple comparisons, most phenotypic correlations among the traits measured were nonsignificant. Thus, in this andromonoecious species there is not a strong relationship between resource availability (vegetative size) and female success, and female success is instead determined by the relative production of the two different flower types.  相似文献   

16.
Floral organs are widely believed to enhance the pollination and reproductive success of angiosperms. However, the functional implication of some floral structures is still unknown. In this study, we explored the functional role of staminal appendages on male and female reproductive success of Himalayan Roscoea spp. and tested if their function differed between species with biotic pollination and autonomous selfing. Phenotypic manipulation is a powerful approach to test the functional effect of a particular trait on plant fitness. We compared various proxies of pollination success between intact flowers and flowers with manually excised staminal appendages. We found that the rate of visitation did not differ between intact and manipulated flowers. Our results revealed that in outcrossing Roscoea spp., the staminal appendages act as triggering devices to facilitate pollen release and deposition and also to manipulate the foraging position of pollinators to ensure both male and female reproductive success. In contrast, in autonomously selfing Roscoea spp., the removal of staminal appendages did not affect any aspect of pollination processes. Our results suggest that the staminal appendages are an integral component of outcrossing in Roscoea spp. and are maintained by selection pressure through both male and female reproductive success. This study provides important insights on how variation in breeding systems can provoke changes in the structure and function of floral organs among congeners.  相似文献   

17.
传粉者的选择作用是花表型性状进化的重要驱动力, 解析选择作用的强度是理解花进化的关键。通过表型操控实验和表型选择研究能够分析花性状与其适合度的关系, 探究花性状的表型选择作用。为揭示花性状变化对雌性适合度的影响, 本研究处理展毛翠雀(Delphinium kamaonense var. glabrescens)花萼片大小, 并进行表型选择分析。结果表明: 人为减小展毛翠雀花萼片显著降低了传粉者的访花频率, 但是并没有影响种子产量(种子数和结籽率), 说明展毛翠雀花萼片的大小不影响种子产量, 可能主要吸引传粉昆虫输出花粉。通过雌性适合度(种子数量)估计表型选择梯度, 发现花萼片大小(长和宽)没有受到显著的直接选择梯度。但是, 花距长受到显著的线性选差和选择梯度, 表明花距的延长能够增加种子产量。本研究表明展毛翠雀花性状受到选择的作用, 但萼片和花距有不同的功能, 分别影响传粉者访问频率和种子产量。  相似文献   

18.
Extraordinary floral variation is common among some orchids that employ deception to attract pollinators. This variation may be maintained by frequency-dependent selection where rare phenotypes are preferred. Over a 2-yr period, 1993-1994, we monitored the reproductive success of Tolumnia variegata, an obligately outcrossing epiphytic orchid, at three localities in Puerto Rico that differed in pollinator service. Plants varied in floral morphology and fragrance characteristics. Artificial arrays of varying frequencies of scentless and fragrant phenotypes were established to test for frequency-dependent selection. Where pollinators were rare (Cambalache, range of census average = 0-0.2 bees/h), 0.9-1.2% of the flowers were effectively visited (pollinarium removals and pollinations). At Tortuguero where 0.4-1.1 bees/h were observed, 4-9.2% of the flowers were visited. At Pi;atnones where bees were the most abundant (1.4-5.2 bees/h), 20.9-25.0% of the flowers were visited. A significant portion of the variance in all measures of reproductive success (male, female, and combined) was explained by differences among populations, which we attribute mostly to variation in pollinator abundance. Neither the fragrance phenotype nor its frequency had a significant effect on success as revealed by a split-plot ANOVA. There was a significant interaction between population and phenotypic frequencies in all our measures of reproductive success, but only for the 1994 flowering season. Thus, variation in floral fragrance phenotypes is not likely maintained by frequency-dependent selection. High levels of variation remain unexplained.  相似文献   

19.
Plants from three Lobelia cardinalis populations were grown under common garden conditions to assess intra- and interplant variation in seed and pollen production. Seed number per flower and mean seed weight varied systematically with floral position on the inflorescence (lowest values were from terminal flowers) but pollen grain number per flower did not vary systematically with floral position. Most of the remaining variance in seed and pollen grain number per flower and mean seed weight was distributed among plants; clones produced very similar amounts of pollen and seed. Seed yield was positively correlated with seed production per flower and with total flower production, but not with mean seed weight; pollen yield was also positively correlated with pollen grain production per flower and total flower production. Seed and pollen yield were simple linear functions of plant size but only pollen yield was a simple linear function of flower production; seed yield was a quadratic function in which the second order term was negative. This quadratic relationship resulted from a negative correlation between seed number per flower and total flower production. This correlation, in addition to the wide variation among plants in pollen number per flower, accounts for the weak correlation of seed and pollen yield. I conclude from these data that it is unlikely that plants in natural L. cardinalis populations transmit genes to the population's seed crop equally through pollen and ovules—emphasizing the importance of measuring both male and female components of reproductive success.  相似文献   

20.
蒙古沙冬青花序内性分配的变化、传粉者运动与繁殖成功   总被引:1,自引:0,他引:1  
性分配理论主要研究繁殖资源在雌雄功能间的最优分配,从雌雄功能的角度考虑其个体适合度.对花序内不同部位花的雌性与雄性资源分配变化的研究,对于我们理解植物采取哪种繁殖对策保障繁殖成功具有重要意义.本文对生长在中国科学院吐鲁番沙漠植物园内的蒙古沙冬青(Ammopiptanthus mongolicus)连续开花花序内不同部位...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号