首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract

Histone deacetylases (HDACs) are implicated in the pathology of various cancers, and their pharmacological blockade has proven to be promising in reversing the malignant phenotypes. However, lack of crystal structures of some of the human HDAC isoforms (e.g., HDAC10) hinders the design of the isoform-selective inhibitor. Here, the recently solved X-ray crystal structure of Danio rerio (zebrafish) HDAC10 (Protein Data Bank (PDB) ID; 5TD7, released on 24 May 2017) was retrieved from the PDB and used as a template structure to model the three-dimensional structure of human HDAC10. The overall quality of the best model (M0017) was assessed by computing its z-score—a measure of the deviation of the total energy of the structure with respect to an energy distribution derived from random conformations and by docking of known HDAC10 inhibitors to its catalytic cavity. Furthermore, to identify potential HDAC10-selective inhibitor ligand-based virtual screening was carried out against the ZINC database. The free modeled structure of HDAC10 and its complexes with quisinostat and the highest-ranked compound ZINC19749069 were submitted to molecular dynamics simulation. The comparative analysis of root-mean-squared deviation, root-mean-squared fluctuation, radius of gyration (Rg), and potential energy of these systems showed that HDAC10-ZINC19749069 complex remained the most stable over time. Thus, M0017 could be potentially used for structure-based inhibitor against HDAC10, and ZINC19749069 may provide a scaffold for further optimization.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
A three dimensional structural model of Glutathione-S-transferase (GST) of the lymphatic filarial parasite Wuchereria bancrofti (wb) was constructed by homology modeling. The three dimensional X-ray crystal structure of porcine -class GST with PDB ID: 2gsr-A chain protein with 42% sequential and functional homology was used as the template. The model of wbGST built by MODELLER6v2 was analyzed by the PROCHECK programs. Ramachandran plot analysis showed that 93.5% of the residues are in the core region followed by 5.4 and 1.1% residues in the allowed and generously allowed regions, respectively. None of the non-glycine residues is in disallowed regions. The PROSA II z-score and the energy graph for the final model further confirmed the quality of the modeled structure. The computationally modeled three-dimensional (3D) structure of wbGST has been submitted to the Protein Data Bank (PDB) (PDB ID: 1SFM and RCSB ID: RCSB021668). 1SFM was used for docking with GST inhibitors by Hex4.2 macromolecular docking using spherical polar Fourier correlations.Figure: A three-dimensional (3D) structure of Glutathione-S-transferase (GST) of the lymphatic filarial parasite Wuchereria bancrofti (wb) was constructed by homology modeling. This modeled 3D structure of wbGST has been submitted to the Protein Data Bank (PDB) (PDB ID: 1SFM and RCSB ID: RCSB021668).  相似文献   

3.
Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of α-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-β1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against α-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-β1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.  相似文献   

4.
Abstract

Two RNA sequences, AAA and AUG, were studied by the conformational search program CICADA and by molecular dynamics (MD) in the framework of the AMBER force field, and also via thorough PDB database search. CICADA was used to provide detailed information about conformers and conformational interconversions on the energy surfaces of the above molecules. Several conformational families were found for both sequences. Analysis of the results shows differences, especially between the energy of the single families, and also in flexibility and concerted conformational movement. Therefore, several MD trajectories (altogether 16 ns) were run to obtain more details about both the stability of conformers belonging to different conformational families and about the dynamics of the two systems. Results show that the trajectories strongly depend on the starting structure. When the MD start from the global minimum found by CICADA, they provide a stable run, while MD starting from another conformational family generates a trajectory where several different conformational families are visited. The results obtained by theoretical methods are compared with the thorough database search data. It is concluded that all except for the highest energy conformational families found in theoretical result also appear in experimental data.

Registry numbers:

adenylyl-(3′ →5′)-adenylyl-(3′ →5′)-adenosine [917-44-2]

adenylyl-(3′ →5′)-uridylyl-(3′ →5′)-guanosine [3494-35-7]  相似文献   

5.
《Journal of Asia》2019,22(1):33-40
Gut proteases are accountable for survival of Helicoverpa armigera on protein rich parts of plant devastating many important agricultural crops. The aim of present study was to identify potential natural compounds having inhibitory potency against Helicoverpa armigera gut proteases. We have modeled structure of H. armigera serine protease (UniProt ID: O18447) and analyzed its interactions with maslinic acid (Zinc ID: ZINC38140521). A 3D model was generated using bovine trypsin in complex with analogues of sunflower inhibitor 1 as template with the help of Chimera Modeler 1.11. The PROCHECK and Modfold analysis have revealed 81.8% of residue in favored region. The POOL and COACH analysis have revealed 18 amino acids in the active site. In the 10 ns MD simulations of modeled structure, the RMSD of the protein backbone increased slightly and later stabilized from 7 ns to 10 ns. The modeled structure was stabilized at gyration distance of about 1.65 nm at 7 ns. Potential hit compounds from the ZINC database identified in this study showed good inhibitory bindings with modeled structure. Among these compounds maslinic acid, a plant based pentacyclic triterpenes was found to be potent lead compound with good binding affinity (−9.5 kcal/mol). RMSD profile was <0.45 nm for complex with stabilization at about 18,000 ps (18 nm) suggesting stable interaction. This work demonstrates reasonable in silico inhibitory action of maslinic acid against H. armigera serine protease and depicts utility of in silico methodologies for designing competent strategies against dreaded insect pests like H. armigera.  相似文献   

6.
Abstract

Farnesoid X receptor (FXR), a bile acid receptor, has important roles in maintaining bile acid and cholesterol homeostasis, which is an attractive target for hyperlipidemia. Present study aimed to discover potential selective FXR agonists over G-protein coupled bile acid receptor 1 (GPBAR1, TGR5) from traditional Chinese medicine (TCM) by using virtual screening, in vitro studies and molecular dynamics simulation (MD). Ligand-based pharmacophore model for FXR was firstly built to screen FXR agonists from the Traditional Chinese Medicine Database (TCMD). Then, 21 FXR crystal structures were clustered in two types and two representative structures (PDB ID: 3OMM and 3P89) were, respectively, used to carry out molecular docking to refine the screened result. Moreover, the pharmacophore model for GPBAR1 was built to screen selective FXR agonists with no activity on GPBAR1. A set of 24 candidate selective FXR agonists which fitvalue of FXR pharmacophore model and docking score of 3OMM and 3P89 were in the top 100 and cannot match the pharmacophore model for GPBAR1 were obtained. By the lipid-lowering activity test in HepG2 cell lines, Arctigenin was identified to be potential selective FXR agonist with the activity of 20?μmol·L?1. After down-regulating FXR, Arctigenin could increase the mRNA of FXR while exerted no effect on the mRNA of GPBAR1. MD was further used to interpret the mechanism of Arctigenin with the representative structures. This research provided a new screening procedure for finding selective candidate compounds and appropriate docking models of a target by considering the structure diversity of PDB structures, which was applied to discovery novel selective FXR agonists to treat hyperlipidemia.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Abstract

We have carried out 1 nanosecond (ns) Molecular Dynamics (MD) simulations of the drug Y3 (4-acetylamino-5-hydroxynaphthalene-2, 7-disulfonic acid) complexed with catalytic domain of Avian sarcoma virus Integrase (ASV-IN), both in vacuum and in the presence of explicit solvent. Starting models were obtained on the basis of PDB co-ordinates (1A5X) of ASV-IN-Y3 complex, by Lubkowski et al [1]. Mn2+ cation was present in the active site. To neutralize the positive charge in the presence of explicit solvent, eight Cl? anions were added. Energy Minimization (EM) and MD simulations, for both the systems, were carried out using Sander's module of AMBER5.0 [2] with all atom force field. Analysis of ligand- protein interaction in both environments is discussed in the paper. We also carried out 1 ns MD simulation on two flexible loops—L1 (Gly54-Gln62) and L2 (Trp138-Met155) playing crucial role in interaction of IN with the drug [3], under differing environmental conditions (vacuum, aqueous and organic solvent methanol). Comparison of the conformational changes in the loops, monomer and dimer is presented in the paper. Our results showed that the conformation of the loop region was closest to crystallographic data in case of monomer and constrained loops in aqueous environment. However, the dimer in vacuum was more stable than monomer. The β sheet structure of the monomer in aqueous environment was unstable. Latter also took long time for equilibration. The box formed by loops L1 and L2 from two sub units IINA and INB) of the dimer satisfies prerequisites for ligand recognition site and seems to be the functional biological unit.  相似文献   

8.
Abstract

Histone deacetylases (HDACs), a critical family of epigenetic enzymes, has emerged as a promising target for antitumor drugs. Here, we describe our protocol of virtual screening in identification of novel potential HDAC inhibitors through pharmacophore modeling, 3D-QSAR, molecular docking and molecular dynamics (MD) simulation. Considering the limitation of current virtual screening works, drug repurposing strategy was applied to discover druggable HDAC inhibitor. The ligand-based pharmacophore and 3D-QSAR models were established, and their reliability was validated by different methods. Then, the DrugBank database was screened, followed by molecular docking. MD simulation (100?ns) was performed to further study the stability of ligand binding modes. Finally, results indicated the hit DB03889 with high in silico inhibitory potency was suitable for further experimental analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
Abstract

HDAC6 is a protein involved in cancer, neurodegenerative disease and inflammatory disorders. To date, the full three-dimensional (3D) structure of human HDAC6 has not been elucidated; however, there are some experimental 3D structural homologs to HDAC6 that can be used as templates. In this work, we utilized molecular modeling procedures to model both of the catalytic domains of HDAC6 connected by the linker region where DMB region is placed. Once the 3D structure of human HDAC6 was obtained, it was structurally evaluated and submitted to docking and molecular dynamic (MD) simulations along with Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method to explore the stability and the binding free energy properties of the HDAC6–ligand complexes. In addition, its structural and energetic behavior was explored with each one of the catalytic domains in the molecular recognition of six selective HDAC6 inhibitors, HPOB, CAY10603, Nexturastat, Rocilinostat, Tubacin and Tubastatin A for DD2, and with the so-called 9-peptide which is DD1–HDAC6 selective substrate. The use of the whole system (DD1–DMB–DD2) showed a tendency toward the ligand affinity of DD2, CAY10603> Tubacin?>?Rocilinostat?> Nexturastat?>?HPOB?>?Tubastatin > 9-peptide, which is in line with experimental reports. However, 9-peptide showed a higher affinity for DD1, which agrees with experimental reports elsewhere. Principal component analysis provided important information about the structural changes linked to the molecular recognition process, whereas per-residue decomposition analysis revealed the energetic contribution of the key residues in the molecular binding and structural characteristics that could assist in drug design.  相似文献   

10.
Abstract

The UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (MurG) is located in plasma membrane which plays a crucial role for peptidoglycan biosynthesis in Gram-negative bacteria. Recently, this protein is considered as an important and unique drug target in Acinetobacter baumannii since it plays a key role during the synthesis of peptidoglycan as well as which is not found in Homo sapiens. In this study, initially we performed comparative protein modeling approach to predict the three-dimensional model of MurG based on crystal structure of UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (PDB ID: 1F0K) from E.coli K12. MurG model has two important functional domains located in N and C- terminus which are separated by a deep cleft. Active site residues are located between two domains and they are Gly20, Arg170, Gly200, Ser201, Gln227, Phe254, Leu275, Thr276, and Glu279 which play essential role for the function of MurG. In order to inhibit the function of MurG, we employed the High Throughput Virtual Screening (HTVS) and docking techniques to identify the promising molecules which will further subjected into screening for computing their drug like and pharmacokinetic properties. From the HTVS, we identified 5279 molecules, among these, 12 were passed the drug-like and pharmacokinetic screening analysis. Based on the interaction analysis in terms of binding affinity, inhibition constant and intermolecular interactions, we selected four molecules for further MD simulation to understand the structural stability of protein-ligand complexes. All the analysis of MD simulation suggested that ZINC09186673 and ZINC09956120 are identified as most promising putative inhibitors for MurG protein in A. baumannii.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
Abstract

The pre-crystallization solution of the transaminase from Thermobaculum terrenum (TaTT) has been studied by small-angle X-ray scattering (SAXS). Regular changes in the oligomeric composition of the protein were observed after the addition of the precipitant. Comparison of the observed oligomers with the crystal structure of TaTT (PDB ID 6GKR) shows that dodecamers may act as building blocks in the growth of transaminase single crystals. Correlating of these results to the similar X-ray studies of other proteins suggests that SAXS may be a valuable tool for searching optimum crystallization conditions. Abbreviation SAXS small-angle X-ray scattering

Ta transaminase

TaTT transaminase from Thermobaculum terrenum

PLP pyridoxal-5’-phosphate

R-PEA R-(þ)-1-phenylethylamine

BCAT branched-chain amino acid aminotransferase

DAAT D-aminoacid aminotransferase

R-TA R-amine:pyruvate transaminase

Communicated by Ramaswamy H. Sarma  相似文献   

12.
《Plant Ecology & Diversity》2013,6(2-3):185-196
Background: Understanding the effect of perturbation, be it natural or anthropogenic, on the demography and dynamics of the plant populations can help conservation management planning.

Aims: We assessed the impacts of management of a shade coffee plantation on a population of Oncidium poikilostalix (Orchidaceae).

Methods: We studied in a coffee (Coffea arabica) agroecosystem the impact of the current traditional management [T] and two hypothetical epiphyte control management scenarios (intense ‘desmusgue’ [ID] and moderate ‘desmusgue’ [MD]), on the only known Mexican population of O. poikilostalix. Based on 3 years of field demographics data, the population dynamics of the orchid were projected using T, ID and MD scenarios for 20 years into the future.

Results: Under the current management T, the population of O. poikilostalix was projected to grow continuously (λ = 1.102). Conversely, under management ID, the loss of individuals would lead to a sustained population decline (λ = 0.843); in the case of MD, the population would decline more slowly with the population growth rate tending towards equilibrium (λ = 0.966).

Conclusions: The changes in the management of coffee plantations that have become common throughout the south-east of Mexico represent a threat to the survival of the only population of O. poikilostalix in Mexico, and likely threaten other epiphytic species.  相似文献   

13.
A new series of 1,2,3-triazole tethered chalcone acetamide derivatives (7a-c & 8a-r) have been synthesized in excellent yields and their structures were determined by analytical and spectral (FT-IR, 1H NMR, 13C NMR & HRMS) studies. The newly synthesized derivatives were evaluated for their cytotoxic activity against four human cancer cell lines, such as HeLa (Human cervical cancer), A549 (Human alveolar adenocarcinoma), MCF-7 (Human breast adenocarcinoma) and SKNSH (Human brain cancer). Among them, compound 7c exhibited good anti-proliferation activity with HeLa (IC50 7.41 + 0.8 μM), SKNSH (IC50 8.68 + 1.1 μM), MCF-7 (IC50 9.76 + 1.3 μM) and MDA-MB-231, while compounds 7a and 7b showed promising anti-proliferation against above four human cancer cell lines with IC50 7.95–11.62 μM, respectively, compared with the standard drug Doxorubicin. We explored the probable key active site and binding mode interactions in HDAC8 (PDB ID:3SFH) and EHMT2 (PDB ID:3K5K) proteins. The docking results are complementary to the experimental observations.  相似文献   

14.
Acyl CoA diacylglycerol acyltransferase (DGAT, EC 2.3.120) is recognized as a key player of cellular diacylglycerol metabolism. It catalyzes the terminal, yet the committed step in triacylglycerol synthesis using diacylglycerol and fatty acyl CoA as substrates. The protein sequence of diacylglycerol acyltransferse (DGAT) Type 2B in Moretierella ramanniana var. angulispora (Protein_ID = AAK84180.1) was retrieved from GenBank. However, a structure is not yet available for this sequence. The 3D structure of DGAT Type 2B was modeled using a template structure (PDB ID: 1K30) obtained from Protein databank (PDB) identified by searching with position specific iterative BLAST (PSI-BLAST). The template (PDB ID: 1K30) describes the structure of DGAT from Cucurbita moschata. Modeling was performed using Modeller 9v2 and protein model is hence generated. The DGAT type 2B protein model was subsequently docked with six inhibitors (sphingosine; trifluoroperazine; phosphatidic acid; lysophospatidylserine; KCl; 1, 2-diolein) using AutoDock (a molecular docking program). The binding of inhibitors to the protein model of DGAT type 2B is discussed.  相似文献   

15.
Abstract

Drug discovery for a vigorous and feasible lead candidate is a challenging scientific mission as it requires expertise, experience, and huge investment. Natural products and their derivatives having structural diversity are renowned source of therapeutic agents since many years. Tyrosol (a natural phenylethanoid) has been extracted from olive oil, and its structure was confirmed by elemental analysis, FT-IR, FT-NMR, and single crystal X-ray crystallography. The conformational analysis for tyrosol geometry was performed by Gaussian 09 in terms of density functional theory. Validation of bond lengths and bond angles obtained experimentally as well as theoretically were performed with the help of curve fitting analysis, and values of correlation coefficient (R) obtained as 0.988 and 0.984, respectively. The charge transfer within the tyrosol molecule was confirmed by analysis of HOMO→LUMO molecular orbitals. In molecular docking with COX-2 (PDB ID: 5F1A), tyrosol was found to possess satisfactory binding affinity as compared to other NSAIDs (Aspirin, Ibuprofen, and Naproxen) and a COX-2 selective drug (Celecoxib). ADMET prediction, drug-likeness and bioactivity score altogether confirm the lead/drug like potential of tyrosol. Further investigation of simulation quality plot, RMSD and RMSF plots, ligands behavior plot as well as post simulation analysis manifest the consistency of 5F1A-tyrosol complex throughout the 20?ns molecular simulation process that signifies its compactness and stability within the receptor pocket. Abbreviations ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity

Å Angstrom

COX-2 Cyclooxygenase-2

DFT Density Functional Theory

DMF Dimethylformamide

FMO Frontier Molecular Orbital

FT-IR Fourier-transform Infrared Spectroscopy

FT-NMR Nuclear Magnetic Resonance Spectroscopy

HOMO Highest Occupied Molecular Orbital

LUMO Lowest Unoccupied Molecular Orbital

MD Molecular Dynamics

NS Nanosecond

NSAIDs Non-steroidal anti-inflammatory drugs

OPE Osiris Property Explorer

RMSD Root-Mean-Square Deviation

RMSF Root Sean Square Fluctuation

Communicated by Ramaswamy H. Sarma  相似文献   

16.
Abstract

Endo-β-1,4-mannanase named as RfGH5_7 from Ruminococcus flavefaciens cloned, expressed and purified earlier was structurally characterized in present study. The RaptorX modeled structure of RfGH5_7 showed a (β/α)8 Triose-phosphate Isomerase (TIM) barrel fold. The Ramachandran plot assessment of RfGH5_7 showed that all amino acids fall in allowed region except one, Asn22 in the disallowed region. The superposition of RfGH5_7 modeled structure with its nearest homologues revealed that Glu154 acts as proton donor while Glu249 acts as nucleophile. Secondary structure of RfGH5_7 through Circular Dichroism (CD) analysis revealed 33.5% α-helices, 17% β-strands and 49.5% random coils. Molecular Dynamic (MD) simulation showed Root Mean Square Deviation (RMSD), 0.67?nm and radius of gyration (Rg) between 1.9?nm and 1.85?nm. The binding interaction of mannotetraose on the surface of RfGH5_7 structure displayed polar interactions with His219, Tyr221, Trp278, Ser279 and Gly282 residues. Small-angle X-ray scattering (SAXS) analysis displayed the intact and monodispersed nature of the enzyme RfGH5_7. The radius of gyration (Rg) by Guinier analysis for globular shape was found to be 2.29?±?0.09?nm and for rod-shape it was 0.95?±?0.02?nm. Kratky plot confirmed that RfGH5_7 structure is compact and folded in solution. The ab initio derived dummy model of RfGH5_7 displayed single domain structure of yellow humped fish like shape. The RfGH5_7 modeled structure was well fitted with ab initio derived model from SAXS data.

Communicated by Ramaswamy H. Sarma  相似文献   

17.
Abstract

Diabetes is a foremost health problem globally susceptible to increased mortality and morbidity. The present therapies in the antidiabetic class have sound adverse effects and thus, emphasis on the further need to develop effective medication therapy. Peroxisome proliferator-activated receptor alpha-gamma dual approach represents an interesting target for developing novel anti-diabetic drug along with potential anti-hyperlipidimic activity. In the current study, the peroxisome proliferator-activated receptor alpha-gamma agonistic hits were screened by hierarchical virtual screening of drug like compounds followed by molecular dynamics simulation and knowledge-based structure-activity relation analysis. The key amino acid residues of binding pockets of both target proteins were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit. This dual targeted approach of structure based computational technique was undertaken to identify prevalent promising hits for both targets with binding energy and absorption distribution metabolism excretion prediction supported the analysis of their pharmacokinetic potential. In addition, stability analysis using molecular dynamics simulation of the target protein complexes was performed with the most promising dual targeted hit found in this study. Further, comparative analysis of binding site of both targets was done for the development of knowledge-based structure-activity relationship, which may useful for successful designing of dual agonistic candidates. Abbreviations ADME absorption distribution metabolism excretion

HTVS highthroughput virtual screening

MD molecular dynamics

MMGBSA molecular mechanics generalized bonn solvation accessible

PDB protein data bank

PPAR peroxisome proliferator-activated receptor

RMSD Root mean square deviation

RMSF Root mean square fluctuation

SAR structural activity relationship

SP simple precision

T2DM TypeII diabetes mellitus

XP Extra precision

Communicated by Ramaswamy H. Sarma  相似文献   

18.
Histone deacetylase 3 (HDAC3) is a potential target for the treatment of human diseases such as cancers, diabetes, chronic inflammation and neurodegenerative diseases. Previously, we proposed a virtual screening (VS) pipeline named “Hypo1_FRED_SAHA-3” for the discovery of HDAC3 inhibitors (HDAC3Is) and had thoroughly validated it by theoretical calculations. In this study, we attempted to explore its practical utility in a large-scale VS campaign. To this end, we used the VS pipeline to hierarchically screen the Specs chemical library. In order to facilitate compound cherry-picking, we then developed a knowledge-based pose filter (PF) by using our in-house quantitative structure activity relationship- (QSAR-) modelling approach and coupled it with FRED and Autodock Vina. Afterward, we purchased and tested 11 diverse compounds for their HDAC3 inhibitory activity in vitro. The bioassay has identified compound 2 (Specs ID: AN-979/41971160) as a HDAC3I (IC50?=?6.1?μM), which proved the efficacy of our workflow. As a medicinal chemistry study, we performed a follow-up substructure search and identified two more hit compounds of the same chemical type, i.e. 2–1 (AQ-390/42122119, IC50?=?1.3?μM) and 2–2 (AN-329/43450111, IC50?=?12.5?μM). Based on the chemical structures and activities, we have demonstrated the essential role of the capping group in maintaining the activity for this class of HDAC3Is. In addition, we tested the hit compounds for their in vitro activities on other HDACs, including HDAC1, HDAC2, HDAC8, HDAC4 and HDAC6. We have identified these compounds are HDAC1/2/3 selective inhibitors, of which compound 2 show the best selectivity profile. Taken together, the present study is an experimental validation and an update to our earlier VS strategy. The identified hits could be used as starting structures for the development of highly potent and selective HDAC3Is.  相似文献   

19.
Abstract

HCV NS5B polymerase has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting Hepatitis C Virus genotype 1 (HCV GT1). Hepatitis C virus genotype 4a (HCV GT4a) dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS5B polymerase of GT4a using homology modeling, protein–ligand interaction fingerprint (PLIF), docking, pharmacophore, and 3D CoMFA quantitative structure activity relationship (QSAR). Firstly, a high-quality 3D model of HCV NS5B polymerase of GT4a was constructed using crystal structure of HCV NS5B polymerase of GT1 (PDB ID: 3hkw) as a template. Then, both the model and the template were simulated to compare conformational stability. PLIF was generated using five crystal structures of HCV NS5B (PDB ID: 4mia, 4mib, 4mk9, 4mka, and 4mkb), which revealed the most important residues and their interactions with the co-crystalized ligands. After that, a 3D pharmacophore model was developed from the generated PLIF data and then used as a screening filter for 17000328 drug-like zinc database compounds. 900 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. Finally, a 3D CoMFA QSAR was developed using 42 compounds as a training and 19 compounds as a test set. The 3D CoMFA QSAR was used to design and screen some potential inhibitors, these compounds were further evaluated by the docking stage. The highest ranked five hits from docking result (compounds (p1–p4) and compound q1) were selected for further analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Inosine monophosphate dehydrogenase (IMPDH) enzyme involves in GMP biosynthesis pathway. Type I hIMPDH is expressed at lower levels in all cells, whereas type II is especially observed in acute myelogenous leukemia, chronic myelogenous leukemia cancer cells, and 10?ns simulation of the IMP–NAD+ complex structures (PDB ID. 1B3O and 1JCN) have revealed the presence of a few conserved hydrophilic centers near carboxamide group of NAD+. Three conserved water molecules (W1, W, and W1′) in di-nucleotide binding pocket of enzyme have played a significant role in the recognition of carboxamide group (of NAD+) to D274 and H93 residues. Based on H-bonding interaction of conserved hydrophilic (water molecular) centers within IMP–NAD+-enzyme complexes and their recognition to NAD+, some covalent modification at carboxamide group of di-nucleotide (NAD+) has been made by substituting the –CONH2group by –CONHNH2 (carboxyl hydrazide group) using water mimic inhibitor design protocol. The modeled structure of modified ligand may, though, be useful for the development of antileukemic agent or it could be act as better inhibitor for hIMPDH-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号