首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exploration of interaction mechanism of tyrosol as a potent anti-inflammatory agent
Authors:Tara Chand Yadav  Naresh Kumar  Utkarsh Raj  Nidhi Goel  Pritish Kumar Vardawaj  Ramasare Prasad
Institution:1. Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India;2. Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India;3. Department of Bioinformatics, Indian Institute of Information Technology Allahabad, Allahabad, India;4. Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
Abstract:Abstract

Drug discovery for a vigorous and feasible lead candidate is a challenging scientific mission as it requires expertise, experience, and huge investment. Natural products and their derivatives having structural diversity are renowned source of therapeutic agents since many years. Tyrosol (a natural phenylethanoid) has been extracted from olive oil, and its structure was confirmed by elemental analysis, FT-IR, FT-NMR, and single crystal X-ray crystallography. The conformational analysis for tyrosol geometry was performed by Gaussian 09 in terms of density functional theory. Validation of bond lengths and bond angles obtained experimentally as well as theoretically were performed with the help of curve fitting analysis, and values of correlation coefficient (R) obtained as 0.988 and 0.984, respectively. The charge transfer within the tyrosol molecule was confirmed by analysis of HOMO→LUMO molecular orbitals. In molecular docking with COX-2 (PDB ID: 5F1A), tyrosol was found to possess satisfactory binding affinity as compared to other NSAIDs (Aspirin, Ibuprofen, and Naproxen) and a COX-2 selective drug (Celecoxib). ADMET prediction, drug-likeness and bioactivity score altogether confirm the lead/drug like potential of tyrosol. Further investigation of simulation quality plot, RMSD and RMSF plots, ligands behavior plot as well as post simulation analysis manifest the consistency of 5F1A-tyrosol complex throughout the 20?ns molecular simulation process that signifies its compactness and stability within the receptor pocket. Abbreviations ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity

Å Angstrom

COX-2 Cyclooxygenase-2

DFT Density Functional Theory

DMF Dimethylformamide

FMO Frontier Molecular Orbital

FT-IR Fourier-transform Infrared Spectroscopy

FT-NMR Nuclear Magnetic Resonance Spectroscopy

HOMO Highest Occupied Molecular Orbital

LUMO Lowest Unoccupied Molecular Orbital

MD Molecular Dynamics

NS Nanosecond

NSAIDs Non-steroidal anti-inflammatory drugs

OPE Osiris Property Explorer

RMSD Root-Mean-Square Deviation

RMSF Root Sean Square Fluctuation

Communicated by Ramaswamy H. Sarma
Keywords:Tyrosol  ab initio  COX-2  ADMET  molecular docking  molecular dynamics simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号