首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The CD8(+) T cell response to Moloney-murine leukemia virus (M-MuLV)-induced Ags is almost entirely dominated by the exclusive expansion of lymphocytes that use preferential TCRVbeta chain rearrangements. In mice lacking T cells expressing these TCRVbeta, we demonstrate that alternative TCRVbeta can substitute for the lack of the dominant TCRVbeta in the H-2-restricted M-MuLV Ag recognition. We show that, at least for the H-2(b)-restricted response, the shift of TCR usage is not related to a variation of the immunodominant M-MuLV epitope recognition. After virus immunization, all the potentially M-MuLV-reactive lymphocytes are primed, but only the deletion of dominant Vbeta rescues the alternative Vbeta response. The mechanism of clonal T cell "immunodomination" that guides the preferential Vbeta expansion is likely the result of a proliferative advantage of T cells expressing dominant Vbeta, due to differences in TCR affinity and/or cosignal requirements. In this regard, a CD8 involvement is strictly required for the virus-specific cytotoxic activity of CTL expressing alternative, but not dominant, Vbeta gene rearrangements. The ability of T cells expressing alternative TCRVbeta rearrangements to mediate tumor protection was evaluated by a challenge with M-MuLV tumor cells. Although T cells expressing alternative Vbeta chains were activated and expanded, they were not able to control tumor growth in a long-lasting manner due to their incapacity of conversion and accumulation in the T central memory pool.  相似文献   

2.
Among Ag-inexperienced naive T cells, the CD1d-restricted NKT cell that uses invariant TCR-alpha-chain is the most widely studied cell capable of prompt IL-4 inducibility. We show in this study that thymus CD161-CD44lowCD4+CD8- T cells promptly produce IL-4 upon TCR stimulation, a response that displays biased Vbeta(2/7/8) and Valpha3.2 TCR usage. The association of Vbeta family bias and IL-4 inducibility in thymus CD161-CD44lowCD4+CD8- T cells is found for B6, B10, BALB/c, CBA, B10.A(4R), and ICR mouse strains. Despite reduced IL-4 inducibility, there is a similarly biased Vbeta(2/7/8) TCR usage by IL-4 inducibility+ spleen CD161-CD44lowCD4+CD8- T cells. Removal of alpha-galacotosylceramide/CD1d-binding cells from CD161-CD44lowCD4+CD8- thymocytes does not significantly affect their IL-4 inducibility. The development of thymus CD161-CD44lowCD4+CD8- T cells endowed with IL-4 inducibility and their associated use of Vbeta(2/7/8) are beta2-microglobulin-, CD1d-, and p59fyn-independent. Thymus CD161-CD44lowCD4+CD8- T cells produce low and no IFN-gamma inducibility in response to TCR stimulation and to IL-12 + IL-18, respectively, and they express diverse complementarity determining region 3 sequences for both TCR-alpha- and -beta-chains. Taken together, these results demonstrate the existence of a NKT cell distinct, TCR-repertoire diverse naive CD4+ T cell subset capable of prompt IL-4 inducibility. This subset has the potential to participate in immune response to a relatively large number of Ags. The more prevalent nature of this unique T cell subset in the thymus than the periphery implies roles it might play in intrathymic T cell development and may provide a framework upon which mechanisms of developmentally regulated IL-4 gene inducibility can be studied.  相似文献   

3.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

4.
BALB/c are genetically resistant to development of toxoplasmic encephalitis (TE) when infected with Toxoplasma gondii, whereas CBA/Ca mice are susceptible. We compared TCR Vbeta chain usage in lymphocytes infiltrated into brains between these animals following infection. TCR Vbeta8(+) cells were the most frequent T cell population in brains of infected, resistant BALB/c mice, whereas TCR Vbeta6(+) T cells were more prevalent than Vbeta8(+) T cells in brains of infected, susceptible CBA/Ca mice. Adoptive transfer of Vbeta8(+) immune T cells, obtained from infected BALB/c mice, prevented development of TE and mortality in infected athymic nude mice that lack T cells. In contrast, adoptive transfer of Vbeta6(+) immune T cells did not prevent development of TE or mortality in the nude mice. The protective activity of Vbeta8(+) immune T cells was greater than that of the total Vbeta8(-) population. In addition, Vbeta8(+) immune T cells produced markedly greater amounts of IFN-gamma than did the Vbeta8(-) population after stimulation with tachyzoite lysate Ags in vitro. Thus, Vbeta8(+) T cells appear to play a crucial role in the genetic resistance of BALB/c mice against development of TE.  相似文献   

5.
The NK1.1(+)TCRalphabeta(int) CD4(+), or double negative T cells (NK T cells) consist of a mixture of CD1d-restricted and CD1d-unrestricted cells. The relationships between CD4(+)NK1.1(+) T cells and conventional T cells are not understood. To compare their respective TCR repertoires, NK1.1(+)TCRalphabeta(int), CD4(+) T cells have been sorted out of the thymus, liver, spleen, and bone marrow of C57BL/6 mice. Molecular analysis showed that thymus and liver used predominantly the Valpha14-Jalpha281 and Vbeta 2, 7, and 8 segments. These cells are CD1d restricted and obey the original definition of NK T cells. The complementarity-determining region 3 (CDR3) sequences of the TCR Vbeta8.2-Jbeta2.5 chain of liver and thymus CD4(+) NK T cells were determined and compared with those of the same rearrangements of conventional CD4(+) T cells. No amino acid sequence or usage characteristic of NK T cells could be evidenced: the Vbeta8.2-Jbeta2.5 diversity regions being primarily the same in NK T and in T cells. No clonal expansion of the beta-chains was observed in thymus and liver CD1d-restricted CD4(+)NK T cells, suggesting the absence of acute or chronic Ag-driven stimulation. Molecular analysis of the TCR used by Valpha14-Jalpha281 transgenic mice on a Calpha(-/-) background showed that the alpha-chain can associate with beta-chains using any Vbeta segment, except in NK T cells in which it paired predominately with Vbeta 2, 7, and 8(+) beta-chains. The structure of the TCR of NK T cells thus reflects the affinity for the CD1d molecule rather than a structural constraint leading to the association of the invariant alpha-chain with a distinctive subset of Vbeta segment.  相似文献   

6.
Mice immunized with respiratory syncytial virus (RSV) G glycoprotein or with formalin-inactivated RSV (FI-RSV) exhibit severe disease following RSV challenge. This results in type 2 cytokine production and pulmonary eosinophilia, both hallmarks of vaccine-enhanced disease. RSV G-induced T-cell responses were shown to be restricted to CD4(+) T cells expressing Vbeta14 in the T-cell receptor (TCR), and the deletion of these T cells resulted in less severe disease. We therefore examined the role of Vbeta14(+) T cells in FI-RSV-induced disease. BALB/c mice were immunized with vaccinia virus expressing secreted RSV G (vvGs) or with FI-RSV. At the time of challenge with live RSV, mice were injected with antibody to the Vbeta14 component of the TCR. vvGs-immunized mice treated with anti-Vbeta14 had reduced cytokine levels in the lung. Eosinophil recruitment to the lung was also significantly reduced. In contrast, depletion of Vbeta14(+) T cells in FI-RSV-immunized mice had little impact on cytokine production or pulmonary eosinophilia. An analysis of TCR Vbeta chain usage confirmed a bias toward Vbeta14 expression on CD4(+) T cells from vvGs-immunized mice, whereas the CD4(+) T cells in FI-RSV-immunized mice expressed a diverse array of Vbeta chains. These data show that although FI-RSV and vvGs induce responses resulting in similar immunopathology, the T-cell repertoire mediating the response is different for each immunogen and suggest that the immune responses elicited by RSV G are not the basis for FI-RSV vaccine-enhanced disease.  相似文献   

7.
A major pathogenic factor for the development of inflammatory bowel disease (IBD) is the breakdown of the intestinal homeostasis between the host immune system and the luminal microenvironment. To assess the potential influence of luminal Ags on the development of IBD, we fed TCR alpha(-/-) mice an elemental diet (ED). ED-fed TCR alpha(-/-) mice showed no pathologic features of IBD, and their aberrant mucosal B cell responses were suppressed. Similar numbers of CD4(+), TCR betabeta homodimer T cells (betabeta T cells) were developed in the colonic mucosa of ED-fed mice; however, Th2-type cytokine productions were lower than those seen in diseased regular diet (RD)-fed mice. The higher cytokine production in diseased RD-fed mice could be attributed to the high incidence of Bacteroides vulgatus (recovered in 80% of these mice), which can induce Th2-type responses of colonic CD4(+), betabeta T cells. In contrast, ED-fed TCR alpha(-/-) mice exhibited a diversification of Vbeta usage of betabetaT cell populations from the dominant Vbeta8 one associated with B. vulgatus in cecal flora to Vbeta6, Vbeta11, and Vbeta14. Rectal administration of disease-free ED-fed mice with B. vulgatus resulted in the development of Th2-type CD4(+), betabeta T cell-induced colitis. These findings suggest that the ED-induced alteration of intestinal microenvironments such as the enteric flora prevented the development of IBD in TCR alpha(-/-) mice via the immunologic quiescence of CD4(+), betabeta T cells.  相似文献   

8.
Superantigens are microbial proteins that induce massive activation, proliferation, and cytokine production by CD4+ T cells via specific Vbeta elements on the TCR. In this study we examine superantigen enhancement of Ag-specific CD4+ T cell activity for humoral B cell responses to T-dependent Ags BSA and HIV gp120 envelope, type I T-independent Ag LPS, and type II T-independent Ag pneumococcal polysaccharides. Injection of BSA followed by a combination of superantigens staphylococcal enterotoxin A and staphylococcal enterotoxin B (SEB) 7 days later enhanced the anti-BSA Ab response in mice approximately 4-fold as compared with mice given BSA alone. The anti-gp120 response was enhanced approximately 3-fold by superantigens. The type II T-independent Ag pneumococcal polysaccharide response was enhanced approximately 2.3-fold by superantigens, whereas no effect was observed on the response to the type I T-independent Ag LPS. The superantigen effect was completely blocked by the CD4+ T cell inhibitory cytokine IL-10. SEB-stimulated human CD4+ T cells were examined to determine the role of the mitogen-activated protein (MAP) kinase signal transduction pathway in superantigen activation of T cells. Inhibitors of the mitogen pathway of MAP kinase blocked SEB-induced proliferation and IFN-gamma production, while an inhibitor of the p38 stress pathway had no effect. Consistent with this, SEB activated extracellular signal-regulated kinase/MAP kinase as well as MAP kinase-interacting kinase, a kinase that phosphorylates eIF4E, which is an important component of the eukaryotic protein synthesis initiation complex. Both kinases were inhibited by IL-10. Thus, superantigens enhance humoral immunity via Ag-specific CD4+ T cells involving the stress-independent pathway of MAP kinase.  相似文献   

9.
Human CD1d molecules present an unknown ligand, mimicked by the synthetic glycosphingolipid alpha-galactosylceramide (alphaGC), to a highly conserved NKT cell subset expressing an invariant TCR Valpha24-JalphaQ paired with Vbeta11 chain (Valpha24(+)Vbeta11(+) invariant NK T cell (NKT(inv))). The developmental pathway of Valpha24(+)Vbeta11(+)NKT(inv) is still unclear, but recent studies in mice were consistent with a TCR instructive, rather than a stochastic, model of differentiation. Using CD1d-alphaGC-tetramers, we demonstrate that in humans, TCR variable domains other than Valpha24 and Vbeta11 can mediate specific recognition of CD1d-alphaGC. In contrast to Valpha24(+)Vbeta11(+)NKT(inv) cells, Valpha24(-)/CD1d-alphaGC-specific T cells express either CD8alphabeta or CD4 molecules, but they are never CD4 CD8 double negative. We show that CD8alphabeta(+)Valpha24(-)/CD1d-alphaGC-specific T cells exhibit CD8-dependent specific cytotoxicity and have lower affinity TCRs than Valpha24(+)/CD1d-alphaGC-specific T cells. In conclusion, our results demonstrate that, contrary to the currently held view, recognition of CD1d-alphaGC complex in humans is not uniformly restricted to the Valpha24-JalphaQ/Vbeta11 NKT cell subset, but can be mediated by a diverse range of Valpha and Vbeta domains. The existence of a diverse repertoire of CD1d-alphaGC-specific T cells in humans strongly supports their Ag-driven selection.  相似文献   

10.
We previously studied the lung Vbeta TCR repertoire of C57BL/6 mice during primary infection with the pathogen Histoplasma capsulatum. We observed a consistent oligoclonal expansion of Vbeta4(+) T cells during the peak of infection and early stages of resolution. The Vbeta4(+) family played a role in protective immunity against the fungus. Depletion of this subpopulation of T cells hindered optimal clearance of infection from tissues. In this report we analyze the flux of the Vbeta TCR repertoire in the lungs of C57BL/6 mice with reinfection histoplasmosis. We observed a significant increase in Vbeta6(+) T cells on days 7, 10, and 14, the peak and early resolution phases of infection. This skewing was preceded by an increased number of memory T cells within Vbeta6(+) cells. The VDJ sequences of Vbeta6 chains were oligoclonal during the early stages of the infection, suggesting that the expansion was driven by a small number of Ags. More than 96% of the expanded Vbeta6(+) cells were CD4(+). Depletion of Vbeta6(+) T cells but not Vbeta4(+) T cells induced a modest but significant delay in fungal clearance. Simultaneous depletion of Vbeta4(+) and Vbeta6(+) T cells induced a more pronounced impairment of host resistance. These studies illustrate the dynamic interactions between Vbeta families in the response to microbial challenge.  相似文献   

11.
The immunological basis by which a mother tolerates her semi-allogeneic fetus remains poorly understood. Several mechanisms are likely to contribute to this phenomenon including active immune regulation by regulatory T cells. In this article, we report that human placental trophoblasts activate a clonal population of CD8(+) T cells with regulatory function. These cells are not MHC class I restricted, but require costimulation through a member of the carcinoembryonic Ag family present on early gestation trophoblasts. These regulatory T cells express the mucosal markers CD101 and CD103 and display selective usage of the TCR gene Vbeta9. CD8(+) T cells isolated from the peripheral blood of pregnant mothers (16-28 wk) also demonstrate expansions in the same Vbeta family (Vbeta9), signaling a possible role for these cells in preventing fetal rejection in vivo. We have previously characterized a subset of CD8(+) regulatory T cells activated by the combination of the nonclassical class I molecule CD1d and a costimulatory molecule of the carcinoembryonic Ag family present on the intestinal epithelium. These data support the concept that distinct regulatory T cell populations exist at different sites and may be regulated locally by unique restriction elements, costimulatory signals, and Ags.  相似文献   

12.
13.
T cell receptor revision does not solely target recent thymic emigrants   总被引:14,自引:0,他引:14  
CD4(+)Vbeta5(+) T cells enter one of two tolerance pathways after recognizing a peripherally expressed superantigen encoded by an endogenous retrovirus. One pathway leads to deletion, while the other, termed TCR revision, results in cellular rescue upon expression of an alternate TCR that no longer recognizes the tolerogen. TCR revision requires the rearrangement of novel TCR beta-chain genes and depends on recombinase-activating gene (RAG) expression in peripheral T cells. In line with recent findings that RAG(+) splenic B cells are immature cells that have maintained RAG expression, it has been hypothesized that TCR revision is limited to recent thymic emigrants that have maintained RAG expression and TCR loci in a recombination-permissive configuration. Using mice in which the expression of green fluorescent protein is driven by the RAG2 promoter, we now show that in vitro stimulation can drive reporter expression in noncycling, mature, peripheral CD4(+) T cells. In addition, thymectomized Vbeta5 transgenic RAG reporter mice are used to demonstrate that TCR revision can target peripheral T cells up to 2 mo after thymectomy. Both sets of experiments strongly suggest that reinduction of RAG genes triggers TCR revision. Approximately 3% of CD4(+)Vbeta5(+) T cells in thymectomized Vbeta5 transgenic reporter mice have undergone TCR revision within the previous 4-5 days. TCR revision can also occur in Vbeta5(+) T cells from nontransgenic mice, illustrating the relevance of this novel tolerance mechanism in unmanipulated animals.  相似文献   

14.
Multiple sclerosis (MS) is considered to be an autoimmune disease mediated by T cells reactive with Ags in the CNS. Therefore, it has been postulated that neuroantigen-reactive T cells bearing particular types of TCRs are expanded clonally during the course of the disease. However, there is a controversy with regard to the TCR usage by T cells associated with the development of MS. By the use of complementarity-determining region 3 spectratyping analysis that is shown to be a useful tool for identification of pathogenic TCR in autoimmune disease models, we tried to demonstrate that spectratype was T cells bearing particular types of TCR are activated in MS patients. Consequently, it was found that Vbeta5.2 were often oligoclonally expanded in peripheral blood of MS patients, but not of healthy subjects. Sequence analysis of the complementarity-determining region 3 region of spectratype-derived TCR clones revealed that the predominant TCR clone was different from patient to patient, but that similar results were obtained in a patient examined at different time points. More importantly, examination of cerebrospinal fluid T cells and longitudinal studies of PBLs from selected patients revealed that Vbeta5.2 expansion was detectable in the majority of patients examined. These findings suggest that Vbeta5.2 spectratype expansion is associated with the development of MS and that TCR-based immunotherapy can be applicable to MS patients if the TCR activation pattern of each patient is determined at different stages of the disease.  相似文献   

15.
Foreign Ag-specific TCR-transgenic (Tg) mice contain a small fraction of T cells bearing the endogenous Vbeta and Valpha chains as well as a population expressing an intermediate level of Tg TCR. Importantly, these minor nonclonotypic populations contain > or = 99% of the CD4(+)Foxp3(+) regulatory T cells (Treg) and, despite low overall Treg expression, peripheral tolerance is maintained. In the OT-II TCR (OVA-specific, Vbeta5(high)Valpha2(high)) Tg scurfy (Sf) mice (OT-II Sf) that lack Treg, nonclonotypic T cells markedly expanded in the periphery but not in the thymus. Expanded T cells expressed memory/effector phenotype and were enriched in blood and inflamed lungs. In contrast, Vbeta5(high)Valpha2(high) clonotypic T cells were not expanded, displayed the naive phenotype, and found mainly in the lymph nodes. Importantly, Vbeta5(neg) T cells were able to transfer multiorgan inflammation in Rag1(-/-) recipients. T cells bearing dual TCR (dual Vbeta or dual Valpha) were demonstrated frequently in the Vbeta5(int) and Valpha2(int) populations. Our study demonstrated that in the absence of Treg, the lack of peripheral expansion of clonotypic T cells is due to the absence of its high-affinity Ag OVA. Thus, the rapid expansion of nonclonotypic T cells in OT-II Sf mice must require Ag (self and foreign) with sufficient affinity. Our study has implications with respect to the roles of Ag and dual TCR in the selection and regulation of Treg and Treg-controlled Ag-dependent T cell expansion in TCR Tg and TCR Tg Sf mice, respectively.  相似文献   

16.
Regulatory mechanisms involving CD8+ T cells (CD8 regulatory T cells (Tregs)) are important in the maintenance of immune homeostasis. However, the inability to generate functional CD8 Treg clones with defined Ag specificity has precluded a direct demonstration of CD8 Treg-mediated regulation. In the present study, we describe the isolation of functional lines and clones representing a novel population of TCRalphabeta+ Tregs that control activated Vbeta8.2+ CD4 T cells mediating experimental autoimmune encephalomyelitis. They express exclusively the CD8alphaalpha homodimer and recognize a peptide from a conserved region of the TCR Vbeta8.2 chain in the context of the Qa-1a (CD8alphaalpha Tregs). They secrete type 1 cytokines but not IL-2. CD8alphaalpha Tregs kill activated Vbeta8.2+ but not Vbeta8.2- or naive T cells. The CD8alphaalpha Tregs prevent autoimmunity upon adoptive transfer or following in vivo activation. These findings reveal an important negative feedback regulatory mechanism targeting activated T cells and have implications in the development of therapeutic strategies for autoimmune diseases and transplantation.  相似文献   

17.
Gene transfer of TCR alphabeta-chains into T cells may be a promising strategy for providing valuable T lymphocytes in the treatment of tumors and other immune-mediated disorders. We report in this study the reconstitution of CD8(+) T cells by transfer of TCR alphabeta-chain genes derived from an infiltrating T cell into P815. Analysis of the clonal expansion and Vbeta subfamily usage of CD8(+) TIL in the tumor sites demonstrated that T cells using Vbeta10 efficiently infiltrated and expanded clonally. The TCR alpha- and beta-chain sequences derived from a tumor-infiltrating CD8(+)/Vbeta10(+) single T cell clone (P09-2C clone) were simultaneously determined by the RT-PCR/single-strand conformational polymorphism method and the single-cell PCR method. When P09-2C TCR alphabeta-chain genes were retrovirally introduced into CD8(+) T cells, the reconstituted T cells positively lysed the P815 tumor cells, but not the A20, EL4, or YAC-1 cells, in vitro. In addition, the CTL activity was blocked by the anti-H2L(d) mAb. Furthermore, T cells containing both TCR alpha- and beta-chains, but not TCR beta-chain alone, accumulated at the tumor-inoculated site when the reconstituted CD8(+) T cells were adoptively transferred to tumor-bearing nude mice. These findings suggest that it is possible to reconstitute functional tumor-specific CD8(+) T cells by transfer of TCR alphabeta-chain genes derived from TIL, and that such T cells might be useful as cytotoxic effector cells or as a vehicle for delivering therapeutic agents.  相似文献   

18.
Mouse CD4(+)Vbeta5(+) T cells recognize a peripherally expressed superantigen encoded by an endogenous retrovirus. Ag encounter tolerizes the mature CD4 T cell compartment, either by deletion of autoreactive cells or by TCR revision. This latter process is driven by TCRbeta rearrangement through RAG activity and results in the rescue of cells expressing novel TCRs that no longer recognize the tolerogen. Consistent with the notion that revising T cells represent a distinct peripheral T cell population, we now show that these lymphocyte blasts express a hybrid effector/memory phenotype and are not undergoing cell division. A population of revising T cells is CD40(+), expresses the germinal center (GC) marker CXCR5, and is Vbeta5(low)Thy-1(low). Histology reveals that, consistent with their surface Ag phenotype, T cells undergoing TCR revision are enriched in splenic GCs. These data demonstrate that TCR revision is a multistep tolerance pathway supported by the unique microenvironment provided by GCs.  相似文献   

19.
Huber SA  Sartini D  Exley M 《Journal of virology》2002,76(21):10785-10790
T cells expressing the Vgamma4 T-cell receptor (TCR) promote myocarditis in coxsackievirus B3 (CVB3)-infected BALB/c mice. CD1, a major histocompatibility complex (MHC) class I-like molecule, is required for activation of Vgamma4(+) cells. Once activated, Vgamma4(+) cells initiate myocarditis through gamma interferon (IFN-gamma)-mediated induction of CD4(+) T helper type 1 (Th1) cells in the infected animal. These CD4(+) Th1 cells are required for activation of an autoimmune CD8(+) alphabeta TCR(+) effector, which is the predominant pathogenic agent in this model of CVB3-induced myocarditis. Activated Vgamma4(+) cells can adoptively transfer myocarditis into BALB/c mice infected with a nonmyocarditic variant of CVB3 (H310A1) but cannot transfer myocarditis into either uninfected or CD1(-/-) recipients, demonstrating the need for both infection and CD1 expression for Vgamma4(+) cell function. In contrast, CD8(+) alphabeta TCR(+) cells transfer myocarditis into either infected CD1(-/-) or uninfected recipients, showing that once activated, the CD8(+) alphabeta TCR(+) effectors function independently of both virus and CD1. Vgamma4(+) cells given to mice lacking CD4(+) T cells minimally activate the CD8(+) alphabeta TCR(+) cells. These studies show that Vgamma4(+) cells determine CVB3 pathogenicity by their ability to influence both the CD4(+) and CD8(+) adaptive immune response. Vgamma4(+) cells enhance CD4(+) Th1 (IFN-gamma(+)) cell activation through IFN-gamma- and CD1-dependent mechanisms. CD4(+) Th1 cells promote activation of the autoimmune CD8(+) alphabeta TCR(+) effectors.  相似文献   

20.
Previous studies have identified murine and human regulatory CD8+ T cells specific for TCR-Vbeta families expressed on autologous activated CD4+ T cells. In the mouse, these regulatory CD8+ T cells were shown to be restricted by the MHC class Ib molecule, Qa-1. In the present study, we asked whether HLA-E, the human functional equivalent of Qa-1, binds Vbeta peptides and whether the HLA-E/Vbeta-peptide complex induces and restricts human CD8+ CTLs. We first created stable HLA-E gene transfectants of the C1R cell line (C1R-E). Two putative HLA-E binding nonapeptides identified in human TCR Vbeta1 and Vbeta2 chains (SLELGDSAL and LLLGPGSGL, respectively) were shown to bind to HLA-E. CD8+ T cells could be primed in vitro by C1R-E cells loaded with the Vbeta1 (C1R-E/V1) or Vbeta2 (C1R-E/V2) peptide to preferentially kill C1R-E cells loaded with the respective inducing Vbeta peptide, compared with targets loaded with the other peptides. Priming CD8+ T cells with untreated C1R-E cells did not induce Vbeta-specific CTLs. Of perhaps more physiological relevance was the finding that the CD8+ CTLs primed by C1R-E/V1 also preferentially killed activated autologous TCR Vbeta1+. Similar results were observed in reciprocal experiments using C1R-E/V2 for priming. Furthermore, anti-CD8 and anti-MHC class I mAbs inhibited this Vbeta-specific killing of C1R-E and CD4+ T cell targets. Taken together, the data provide evidence that certain TCR-Vbeta peptides can be presented by HLA-E to further induce Vbeta-specific CD8+ CTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号