首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Aim The use of ecological niche models (ENMs) to predict potential distributions of species is steadily increasing. A necessary assumption is that climatic niches are conservative, but recent findings of niche shifts during biological invasion indicate that this assumption is not always valid. Selection of predictor variables may be one reason for the observed shifts. In this paper we assess differences in climatic niches in the native and invaded ranges of the Mediterranean house gecko (Hemidactylus turcicus) in terms of commonly applied climate variables in ENMs. We analyse which variables are more conserved versus relaxed (i.e. subject to niche shift). Furthermore, we study the predictive power of different sets of climate variables. Location The Mediterranean region and North America. Methods We developed models using Maxent and various subsets of variables out of 19 bioclimatic layers including: (1) two subsets comprising almost all variables excluding only highly collinear ones; (2) two subsets with minimalistic variable sets of water availability and energy measures; (3) two subsets focused on temperature‐related parameters; (4) two subsets with precipitation‐related parameters; and (5) one subset comprising variables combining temperature and precipitation characteristics. Occurrence data from the native Mediterranean range were used to predict the potential introduced range in North America and vice versa. Degrees of niche similarity and conservatism were assessed using both Schoener's index and Hellinger distances. The significance of the results was tested using null models. Results The degree of niche similarity and conservatism varied greatly among the predictors and variable sets applied. Shifts observed in some variables could be attributed to active habitat selection while others apparently reflected background effects. Main conclusions The study was based on comprehensive occurrence data from all regions where Hemidactylus turcicus is present in Europe and North America, providing a robust foundation. Our results clearly indicate that the degree of conservatism of niches in H. turcicus largely varies among predictors and variable sets applied. Therefore, the extent of niche conservatism of variables applied should always be tested in ENMs. This has an important impact on studies of biological invasion, impacts of climate change and niche evolution.  相似文献   

2.
Different species’ niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate–water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.  相似文献   

3.
Aim Theoretical work suggests that species’ ecological niches should remain relatively constant over long‐term ecological time periods, but empirical tests are few. We present longitudinal studies of 23 extant mammal species, modelling ecological niches and predicting geographical distributions reciprocally between the Last Glacial Maximum and present to test this evolutionary conservatism. Location This study covered distributional shifts in mammal species across the lower 48 states of the United States. Methods We used a machine‐learning tool for modelling species’ ecological niches, based on known occurrences and electronic maps summarizing ecological dimensions, to assess the ability of ecological niches as modelled in one time period to predict the geographical distribution of the species in another period, and vice versa. Results High intertemporal predictivity between niche models and species’ occurrences indicate that niche conservatism is widespread among the taxa studied, particularly when statistical power is considered as a reason for failure of reciprocal predictions. Niche projections to the present for 8 mammal taxa that became extinct at the end of the Pleistocene generally increased in area, and thus do not support the hypothesis of niche collapse as a major driving force in their extinction. Main conclusions Ecological niches represent long‐term stable constraints on the distributional potential of species; indeed, this study suggests that mammal species have tracked consistent climate profiles throughout the drastic climate change events that marked the end of the Pleistocene glaciations. Many current modelling efforts focusing on anticipating climate change effects on species’ potential geographical distributions will be bolstered by this result — in essence, the first longitudinal demonstration of niche conservatism.  相似文献   

4.
Aim Scale dependence of patterns and processes remains one of the major unresolved problems in ecology. The responses of ecosystems to environmental stressors are reported to be strongly scale dependent, but projections of the effects of climate change on species' distributions are still restricted to particular scales and knowledge about scale dependence is lacking. Here we propose that the scale dependence of those species' niche dimensions related to climate change is strongly related to the strength of climatic cross‐scale links. More specifically, we hypothesize that the strong cross‐scale links between micro‐ and macroclimatic conditions are related to high cross‐scale similarity (low scale dependence) of species' realized temperature niches and, thus, species' spatial distributions. Location This study covers seven orders of magnitude of spatial scale, ranging from local‐scale (below a metre) and regional‐scale (kilometre) investigations in central European wetland ecosystems to continental‐scale (thousands of kilometres) studies of species' distributions. Methods We combined data on the spatial occurrence of species (vegetation records at local and regional scales, digitized distribution maps at the continental scale) with information about the corresponding temperature regime of vascular plant species occurring in environmentally stable wetland ecosystems characterized by strong cross‐scale links between micro‐ and macroclimatic conditions. Results We observed high cross‐scale similarity of the characteristics of species temperature niches across seven orders of magnitude of spatial scale. However, the importance of temperature as an abiotic driver decreased nonlinearly with decreasing scale, suggesting greater importance of additional (biotic) drivers of species' occurrence at small spatial scales. Main conclusions We report high cross‐scale similarity of realized temperature niches for species inhabiting ecosystems where small‐scale environmental noise is low and cross‐scale links between micro‐ and macroclimatic conditions are strong. By highlighting a strong relationship between abiotic and biotic cross‐scale similarity, our results will help to improve niche‐based species distribution modelling, one of the major assessment tools for determining the ecological effects of climate change.  相似文献   

5.
6.
Anolis sagrei, a Cuba and Bahama native lizard, is a successful invader in Florida and adjacent areas. Herein, we focus on conservatism in its climate niche axes and possible congruencies with its natural history properties. The not mutually exclusive hypotheses of the present study explaining its northern range limit are: (1) climatic conditions within species' native and invasive ranges are identical; (2) the species is pre‐adapted to novel conditions as a result of historical climate variations; and (3) only some niche axes limit the species' invasive distribution and the observed pattern is explained by an interplay between the potential niche within its native range and life‐history. Species distribution models for native and invasive distributions were built on ten bioclimatic variables. Using Schoener's niche overlap index, the degree of niche conservatism among variables was identified. Significances of hypothesis (1) were tested using null‐model approaches. Possible climatic pre‐adaptations were evaluated by comparing its actual tolerance within its invasive range with that of the Last Glacial Maximum (LGM) within its native range (hypothesis 2). Results of (1) and (2) are discussed in relation to natural history, approaching hypothesis 3. We detect varying overlaps in niche axes, indicating that natural history properties are associated with conservative niche axes. Climatic comparisons with LGM of native and current conditions of invasive range suggest that pre‐adaptations are unlikely. Possible shifts in the fundamental niche of the species may have been facilitated by enhanced genetic diversity in northern invasive populations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 943–954.  相似文献   

7.
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range.  相似文献   

8.
Phylogenetic niche conservatism is the pattern where close relatives occupy similar niches, whereas distant relatives are more dissimilar. We suggest that niche conservatism will vary across clades in relation to their characteristics. Specifically, we investigate how conservatism of environmental niches varies among mammals according to their latitude, range size, body size and specialization. We use the Brownian rate parameter, σ(2), to measure the rate of evolution in key variables related to the ecological niche and define the more conserved group as the one with the slower rate of evolution. We find that tropical, small-ranged and specialized mammals have more conserved thermal niches than temperate, large-ranged or generalized mammals. Partitioning niche conservatism into its spatial and phylogenetic components, we find that spatial effects on niche variables are generally greater than phylogenetic effects. This suggests that recent evolution and dispersal have more influence on species' niches than more distant evolutionary events. These results have implications for our understanding of the role of niche conservatism in species richness patterns and for gauging the potential for species to adapt to global change.  相似文献   

9.
Reconstructing ecological niche evolution can provide insight into the biogeography and diversification of evolving lineages. However, comparative phylogenetic methods may infer the history of ecological niche evolution inaccurately because (a) species' niches are often poorly characterized; and (b) phylogenetic comparative methods rely on niche summary statistics rather than full estimates of species' environmental tolerances. Here, we propose a new framework for coding ecological niches and reconstructing their evolution that explicitly acknowledges and incorporates the uncertainty introduced by incomplete niche characterization. Then, we modify existing ancestral state inference methods to leverage full estimates of environmental tolerances. We provide a worked empirical example of our method, investigating ecological niche evolution in the New World orioles (Aves: Passeriformes: Icterus spp.). Temperature and precipitation tolerances were generally broad and conserved among orioles, with niche reduction and specialization limited to a few terminal branches. Tools for performing these reconstructions are available in a new R package called nichevol.  相似文献   

10.
The question of whether closely related species share similar ecological requirements has attracted increasing attention, because of its importance for understanding global diversity gradients and the impacts of climate change on species distributions. In fact, the assumption that related species are also ecologically similar has often been made, although the prevalence of such a phylogenetic signal in ecological niches remains heavily debated. Here, we provide a global analysis of phylogenetic niche relatedness for the world's amphibians. In particular, we assess which proportion of the variance in the realised climatic niches is explained on higher taxonomic levels, and whether the climatic niches of species within a given taxonomic group are more similar than between taxonomic groups. We found evidence for phylogenetic signals in realised climatic niches although the strength of the signal varied among amphibian orders and across biogeographical regions. To our knowledge, this is the first study providing a comprehensive analysis of the phylogenetic signal in species climatic niches for an entire clade across the world. Even though our results do not provide a strong test of the niche conservatism hypothesis, they question the alternative hypothesis that niches evolve independently of phylogenetic influences.  相似文献   

11.
We assessed the relative roles of natural covariates, human disturbance (water quality and catchment land use) together with geography in driving variation in aquatic macrophyte community composition, richness and status among 101 lakes in southern and central Finland. In addition to all species together, we studied different growth forms (i.e. emergent and submerged macrophytes and aquatic bryophytes) separately. Partial redundancy analysis (taxonomic composition) and partial least-squares regression (species richness and status index) were employed to display the share of variability in macrophyte assemblages that was attributable to the environmental factors (both natural and human-affected) and the spatial filters generated through principal coordinates of neighbor matrices (PCNM).Macrophyte community composition, richness and status were explained by natural covariates, together with joint effects of human disturbance variables and space. The contributions of pure fractions of human disturbance and space were mostly modest, albeit variable among macrophyte groups and status indices. Alkalinity, historical distributions, colour, dynamic ratio and lake area were most important natural covariates for macrophytes. Of those variables influenced by human, macrophytes were mostly explained by conductivity, total phosphorus, turbidity and chlorophyll-a.Our results demonstrate, as expected, that macrophytes are dominantly affected by local environmental variables, whereas dispersal-related processes seem not to be important at regional extent. Response of macrophyte growth forms to environment and space, however, varied significantly. Community composition and richness of emergent macrophytes showed congruent response to natural covariates and human disturbance. Aquatic bryophytes, which are rarely studied along lake macrophytes, responded stronger than other growth forms to human disturbance. Contrary to our expectations, ecological indices were not affected by dispersal-related processes, but were mainly explained by natural covariates. This study is the first to investigate spatial patterns in aquatic macrophytes derived bioassessment. Geographical structuring of environmental variables and regional extent negatively affected indices, suggesting that ecological status assessment needs further development.  相似文献   

12.

Background

Species Distribution Models (SDMs) aim on the characterization of a species'' ecological niche and project it into geographic space. The result is a map of the species'' potential distribution, which is, for instance, helpful to predict the capability of alien invasive species. With regard to alien invasive species, recently several authors observed a mismatch between potential distributions of native and invasive ranges derived from SDMs and, as an explanation, ecological niche shift during biological invasion has been suggested. We studied the physiologically well known Slider turtle from North America which today is widely distributed over the globe and address the issue of ecological niche shift versus choice of ecological predictors used for model building, i.e., by deriving SDMs using multiple sets of climatic predictor.

Principal Findings

In one SDM, predictors were used aiming to mirror the physiological limits of the Slider turtle. It was compared to numerous other models based on various sets of ecological predictors or predictors aiming at comprehensiveness. The SDM focusing on the study species'' physiological limits depicts the target species'' worldwide potential distribution better than any of the other approaches.

Conclusion

These results suggest that a natural history-driven understanding is crucial in developing statistical models of ecological niches (as SDMs) while “comprehensive” or “standard” sets of ecological predictors may be of limited use.  相似文献   

13.
Aim To investigate relative niche stability in species responses to various types of environmental pressure (biotic and abiotic) on geological time‐scales using the fossil record. Location The case study focuses on Late Ordovician articulate brachiopods of the Cincinnati Arch in eastern North America. Methods Species niches were modelled for a suite of fossil brachiopod species based on five environmental variables inferred from sedimentary parameters using GARP and Maxent . Niche stability was assessed by comparison of (1) the degree of overlap of species distribution models developed for a time‐slice and those generated by projecting niche models of the previous time‐slice onto environmental layers of a second time‐slice using GARP and Maxent , (2) Schoener’s D statistic, and (3) the similarity of the contribution of each environmental parameter within Maxent niche models between adjacent time‐slices. Results Late Ordovician brachiopod species conserved their niches with high fidelity during intervals of gradual environmental change but responded to inter‐basinal species invasions through niche evolution. Both native and invasive species exhibited similar levels of niche evolution in the invasion and post‐invasion intervals. Niche evolution was related mostly to decreased variance within the former ecological niche parameters rather than to shifts to new ecospace. Main conclusions Although the species examined exhibited morphological stasis during the study interval, high levels of niche conservatism were observed only during intervals of gradual environmental change. Rapid environmental change, notably inter‐basinal species invasions, resulted in high levels of niche evolution among the focal taxa. Both native and invasive species responded with similar levels of niche evolution during the invasion interval and subsequent environmental reorganization. The assumption of complete niche conservatism frequently employed in ecological niche modelling (ENM) analyses to forecast or hindcast species geographical distributions is more likely to be accurate for climate change studies than for invasive species analyses over geological time‐scales.  相似文献   

14.
The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution.  相似文献   

15.
Aim There is increasing evidence that the quality and breadth of ecological niches vary among individuals, populations, evolutionary lineages and therefore also across the range of a species. Sufficient knowledge about niche divergence among clades might thus be crucial for predicting the invasion potential of species. We tested for the first time whether evolutionary lineages of an invasive species vary in their climate niches and invasive potential. Furthermore, we tested whether lineage‐specific models show a better performance than combined models. Location Europe. Methods We used species distribution models (SDMs) based on climatic information at native and invasive ranges to test for intra‐specific niche divergence among mitochondrial DNA (mtDNA) clades of the invasive wall lizard Podarcis muralis. Using DNA barcoding, we assigned 77 invasive populations in Central Europe to eight geographically distinct evolutionary lineages. Niche similarity among lineages was assessed and the predictive power of a combination of clade‐specific SDMs was compared with a combined SDM using the pooled records of all lineages. Results We recorded eight different invasive mtDNA clades in Central Europe. The analysed clades had rather similar realized niches in their native and invasive ranges, whereas inter‐clade niche differentiation was comparatively strong. However, we found only a weak correlation between geographic origin (i.e. mtDNA clade) and invasive occurrences. Clades with narrow realized niches still became successful invaders far outside their native range, most probably due to broader fundamental niches. The combined model using data for all invasive lineages achieved a much better prediction of the invasive potential. Conclusions Our results indicate that the observed niche differentiation among evolutionary lineages is mainly driven by niche realization and not by differences in the fundamental niches. Such cryptic niche conservatism might hamper the success of clade‐specific niche modelling. Cryptic niche conservatism may in general explain the invasion success of species in areas with apparently unsuitable climate.  相似文献   

16.

Aim

Despite recognition that realized distributions inherently underestimate species' physiological tolerances, we are yet to identify the extent of these differences within diverse taxonomic groups. The degree to which species could tolerate environmental conditions outside their observed distributions may have a significant impact on the perceived extinction risk in ecological models. More information on this potential error is required to improve our confidence in management strategies.

Location

Australia.

Time Period

1983–2012.

Major Taxa Studied

Plants.

Methods

To quantify the scale and spatial patterns of this disparity, we estimated the existing tolerance to thermal extremes of 7,124 Australian plants, more than one‐third of the native continental flora, using data from cultivated records at 128 botanical gardens and nurseries. Hierarchical Bayesian beta regression was used to assess whether factors such as realized niches, traits or phylogeny could predict the incidence or magnitude of niche truncation (underestimation of thermal tolerances), while controlling for sources of collection bias.

Results

Approximately half of the cultivated species analysed could tolerate temperature extremes beyond those experienced in their native range. Niche truncation was predictable from the breadth and extremes of their realized niches and by traits such as plant growth form. Phylogenetic relationships with niche truncation were weak and appeared more suited to predicting thermal tolerances directly.

Main conclusions

This study highlights a widespread disparity between realized and potential thermal limits that may have significant implications for species' capacity to persist in situ with a changing climate. Identifying whether thermal niche truncation is the result of biotic interactions, dispersal constraints or other environmental factors could provide significant insight into community assembly at macroecological scales. Estimating niche truncation may help to explain why certain ecological communities are more resilient to change and may potentially improve the reliability of model projections under climate change.  相似文献   

17.
Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche‐modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population‐level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation.  相似文献   

18.
? Premise of the study: Sharp climatic gradients in South Africa and in particular in the Cape Floristic Region (CFR) provide a diversity of niches over short distances that may have promoted ecological diversification in local clades. Here we measured the extent to which closely related species occupy divergent climates and test whether niche lability is correlated with higher species diversity in the genus. ? Method: We integrated phylogenetic information and environmental niche models (ENM) to assess the levels of climate niche conservatism. ENMs for 113 species of Pelargonium were calculated using maximum entropy. We used two tests, one assessing climate niche equivalency and the other testing niche similarity between sister species and within sections. We also examined whether niche similarity was correlated with phylogenetic relatedness across the genus. ? Key results: Niche similarity was mostly independent of phylogenetic relationships. Compared to random expectations, 23% of closely related species pairs had climate niches that were more similar, and only 6.5% were more disparate; the remaining 70% of comparisons had similarities that fell within random expectations. Similar trends were observed when analyses were restricted to only sister species pairs. Although the overall proportion of niche divergence was low, this was significantly related to sectional diversity. We also found a negative relationship between diversity and the proportion of random niches. ? Conclusions: Lack of widespread niche conservatism in a highly heterogeneous landscape and few instances of significant climate niche lability suggest that an adaptive divergence process was implicated in the Pelargonium radiation.  相似文献   

19.
In this study, we explore the interplay of population demography with the evolution of ecological niches during or after speciation in Hordeum. While large populations maintain a high level of standing genetic diversity, gene flow and recombination buffers against fast alterations in ecological adaptation. Small populations harbour lower allele diversity but can more easily shift to new niches if they initially survive under changed conditions. Thus, large populations should be more conservative regarding niche changes in comparison to small populations. We used environmental niche modelling together with phylogenetic, phylogeographic and population genetic analyses to infer the correlation of population demography with changes in ecological niche dimensions in 12 diploid Hordeum species from the New World, forming four monophyletic groups. Our analyses found both shifts and conservatism in distinct niche dimensions within and among clades. Speciation due to vicariance resulted in three species with no pronounced climate niche differences, while species originating due to long‐distance dispersals or otherwise encountering genetic bottlenecks mostly revealed climate niche shifts. Niche convergence among clades indicates a niche‐filling pattern during the last 2 million years in South American Hordeum. We provide evidence that species, which did not encounter population reductions mainly showed ecoclimatic niche conservatism, while major niche shifts occurred in species which have undergone population bottlenecks. Our data allow the conclusion that population demography influences adaptation and niche shifts or conservatism in South American Hordeum species.  相似文献   

20.
生态位模型预测存在不确定性, 不同模型预测结果差别较大。在生态位保守的前提下, 在本土区域构建经典生态位模型, 利用入侵地独立样本数据检验并选择最优模型, 具有独特优势, 可为入侵物种风险分析提供可靠参考。水盾草(Cabomba caroliniana)是一种恶性水生入侵杂草, 原产于南美洲, 已在我国多个省市建立种群, 本文基于本土最优模型预测其在我国的潜在分布, 以期为其风险分析和综合治理提供依据, 并通过水盾草案例探讨如何提高生态位模型预测准确性的方法。本文按时间顺序梳理了水盾草在我国的分布记录, 然后根据水盾草已有分布记录和其所关联的环境因子比较了不同地理种群所占有的气候生态空间, 测试水盾草在世界入侵过程中的现实生态位保守性。采用两组环境变量和5种算法在南美洲本土地区构建10种生态位模型, 并将其转移至我国, 基于最小遗漏率和记账错率, 利用我国(入侵地)的样本数据选择最优模型预测水盾草在我国的适宜生态空间和潜在分布。研究发现当前水盾草在我国的分布集中在东部水域充沛地区, 沿京杭运河和南水北调工程等向北扩散。生态空间比对中发现水盾草在亚洲与其他大洲所占有的生态空间具有一定的重叠, 其在我国的入侵过程中生态位是保守的。与本土空间相比, 水盾草在我国所占有的生态空间存在较大的生态位空缺, 表明水盾草在我国的潜在分布范围较大。生态位模型预测显示水盾草的适生区主要分布于我国的北京、上海、山东、浙江、江苏、安徽、湖北和湖南等省(市)。水盾草的潜在分布区多聚集在我国东南部, 该地区河流、湖泊、运河和渠道较为密集, 人类活动及自然天敌的缺乏容易助长其入侵趋势, 应在这些适宜地区开展调查, 及时发现疫情并采取相应措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号