首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   9篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   10篇
  2005年   1篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   9篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
1.
Are all plant populations metapopulations?   总被引:2,自引:1,他引:1  
  相似文献   
2.
3.
4.

Background  

Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes.  相似文献   
5.
6.
7.
8.
To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology.  相似文献   
9.
Phylogenetic niche conservatism is the pattern where close relatives occupy similar niches, whereas distant relatives are more dissimilar. We suggest that niche conservatism will vary across clades in relation to their characteristics. Specifically, we investigate how conservatism of environmental niches varies among mammals according to their latitude, range size, body size and specialization. We use the Brownian rate parameter, σ(2), to measure the rate of evolution in key variables related to the ecological niche and define the more conserved group as the one with the slower rate of evolution. We find that tropical, small-ranged and specialized mammals have more conserved thermal niches than temperate, large-ranged or generalized mammals. Partitioning niche conservatism into its spatial and phylogenetic components, we find that spatial effects on niche variables are generally greater than phylogenetic effects. This suggests that recent evolution and dispersal have more influence on species' niches than more distant evolutionary events. These results have implications for our understanding of the role of niche conservatism in species richness patterns and for gauging the potential for species to adapt to global change.  相似文献   
10.
Sperm size and number are important determinants of male reproductive success. The genus Drosophila exhibits a remarkable diversity of sperm production strategies, including the production of multiple sperm morphs by individual males, a phenomenon called sperm heteromorphism. Sperm-heteromorphic Drosophila species in the obscura group produce large numbers of infertile "parasperm" in addition to fertile eusperm. Parasperm have been hypothesized to perform a number of roles in place of fertilization, predominantly focused on their potential function in postcopulatory sexual selection. However, the evolutionary significance of parasperm remains unknown. Here we measured several male and female morphological, behavioral, and life-history traits in 13 obscura group species to test competing hypotheses of parasperm function using comparative methods. We found that parasperm size was unrelated to female reproductive tract morphology but was negatively related to our two indices of sperm competition, suggesting that postcopulatory sexual selection may indeed have shaped the evolution of parasperm. We also found abundant coevolution between male and female reproductive traits. Some of these relationships have been found in both sperm-monomorphic and sperm-heteromorphic taxa, but others are dissimilar. We discuss the significance of our results to the evolution of reproductive traits and the elusive function of Drosophila parasperm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号