首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
建立了谷氨酸棒杆菌合成L色氨酸(LTry)的代谢流量平衡模型,应用该模型计算出发酵中后期的代谢流分布并通过MATLAB软件线性规划得到Try理想代谢流分布。结果表明75.15%的碳架进入糖酵解,24.85%的碳架进入HMP途径;但与理想代谢流相比,应从遗传改造和发酵控制方面降低 TCA循环的代谢流,减少副产氨基酸的生成,摸索最适的溶氧控制对提高Try产率至关重要。  相似文献   

2.
不同溶氧条件下L-苏氨酸生物合成菌株的代谢流量分析   总被引:1,自引:0,他引:1  
黄金  徐庆阳  温廷益  陈宁 《微生物学报》2008,48(8):1056-1060
[目的]探索L-苏氨酸生物合成机理及影响因素.[方法]建立了大肠杆菌L-苏氨酸的代谢流平衡模型,应用MATLAB软件计算出不同溶氧条件下发酵中后期代谢网络的代谢流分布及理想代谢流分布.[结果]5%溶氧条件下,25.5%碳架进入HMP途径,74.5%碳架进入糖酵解途径,获得33.9%质量转化率;20%溶氧条件下,58.08%碳架进入HMP途径,41.92%碳架进入糖酵解途径,获得46.5%质量转化率;[结论]与理想代谢流(88.23%质量转化率)相比,应从菌种改造和发酵控制方面通过改变6-磷酸葡萄糖异构酶借以增加HMP途径代谢流量,通过增加磷酸烯醇式丙酮酸羧化反应代谢流提高天冬氨酸族合成代谢流,减少TCA循环代谢流量,从而达到减少副产物生成,增加L-苏氨酸生物合成的目的.  相似文献   

3.
L-色氨酸生物合成的代谢流量分析   总被引:11,自引:3,他引:8  
建立了谷氨酸棒杆菌合成L-色氨酸(L-Try)的代谢流量平衡模型,应用该模型计算出发酵中后期的代谢流分布并通过MATLAB软件线性规划得到Try理想代谢流分布。结果表明75.15%的碳架进入糖酵解,24.85%的碳架进入HMP途径;但与理想代谢流相比,应从遗传改造和发酵控制方面降低TCA循环的代谢流,减少副产氨基酸的生成,摸索最适的溶氧控制对提高Try产率至关重要。  相似文献   

4.
杂交瘤细胞的代谢流量分析   总被引:4,自引:0,他引:4  
应用代谢流量平衡模型定量分析了杂交瘤细胞的代谢流量分布。结果表明,在连续培养的杂交瘤细胞中,当葡萄糖和谷氨酰胺的流加浓度分别为13.8和2.6 mmol·L-1时,86.2%的葡萄糖通过糖酵解生成乳酸,7.5%的生成脂类,进入TCA循环的仅占0.83%;谷氨酰胺中的氮有3%用于核酸的合成,54.5%生成氨,另有38.2%生成非必需氨基酸,碳骨架61.6%生成非必需氨基酸,34.1%进入TCA循环。  相似文献   

5.
综述体外培养哺乳动物细胞的葡萄糖和谷氨酰胺代谢。大部分的葡萄糖通过糖酵解途径为细胞提供中间代谢物质和能量 ,最终生成乳酸 ,只有很少部分进入TCA循环和磷酸戊糖途径。谷氨酰胺通过谷氨酰胺酶生成谷氨酸 ,并进一步通过谷氨酸脱氢酶或转氨酶生成α -酮戊二酸进入TCA循环 ,为细胞提供中间代谢物质和能量。糖酵解和谷氨酰胺代谢 (glutaminolysis)受葡萄糖和谷氨酰胺的影响而相互调节。  相似文献   

6.
基于途径分析的L-异亮氨酸发酵溶氧控制研究   总被引:4,自引:0,他引:4  
利用途径分析方法对黄色短杆菌(Brevibacterium flavum)TC-21 生产L-异亮氨酸的途径进行了分析,确定了黄色短杆菌TC-21生产L-异亮氨酸的最佳途径的通量分布,根据途径分析的结果,TCA循环的代谢流量对L-异亮氨酸产量有明显影响,而TCA循环与发酵过程中的溶氧密切相关,因此可以通过控制溶氧来提高L-异亮氨酸产量。在发酵过程的不同阶段,根据菌体生长和产酸的需求,改变TCA代谢流量,可以有效提高产酸率。实验证明,通过溶氧分阶段控制发酵生产L-异亮氨酸,比溶氧恒定控制方式发酵产率提高了15.77%。实验结果说明,用途径分析的结果指导发酵过程中的溶氧可以大幅度提高L-异亮氨酸的产量。  相似文献   

7.
L-缬氨酸合成的代谢流量分析   总被引:1,自引:0,他引:1  
分别测定谷氨酸棒杆菌(Corynebacterium glutamicum)AS1-495及其3个逐个叠加不同遗传标记的突变株AA361、AAT231和AATV341在特定培养时段(26~28h)L缬氨酸等代谢物的胞外浓度,由此计算这一时段这些代谢物在发酵液中积累(或消耗)的速率,分别做出这4株菌在拟稳态下的代谢流量分布图,进而研究育种过程中不同遗传标记的叠加对代谢网络中L-缬氨酸合成流量分布的影响。结果表明遗传标记的引入使流量分配发生了重大变化,节点处的流量分配朝着有利于L缬氨酸合成的方向改变。6-磷酸葡萄糖节点处流入EMP途径和HMP途径的流量分配由17.0∶83.0变为24.3∶75.7;丙酮酸节点处流入L-缬氨酸合成途径和其他途径的流量分配由15.8∶842变为76.7∶23.3/L-缬氨酸合成的分支途径上的流量由最初的5.37增大为37.3,乳酸合成途径的流量从11.1最后降为1.16,L-缬氨酸产量由4g/L提高到24.5 g/L。代谢流量分布的变化趋势与L缬氨酸产量的变化趋势是互相吻合的。以2-噻唑丙氨酸抗性突变(2TAr)和L天冬氨酸氧肟酸盐超敏性突变(LAAHss)有效地进行代谢流遗传导向的事实,在代谢流量分析的层面上,证明结构类似物抗性突变和结构类似物超敏性突变是代谢流导向和设计育种的十分有效的手段,代谢流量分析会成为设计育种的校正方法。  相似文献   

8.
柠檬酸钠对L-组氨酸发酵代谢流分布的影响   总被引:2,自引:0,他引:2  
目的:建立谷氨酸棒杆菌TL1105生物合成L-组氨酸的代谢网络模型,并进行代谢网络计量分析。方法:通过所构建的L-组氨酸代谢网络模型,利用MATLAB软件计算出添加柠檬酸钠和不添加柠檬酸钠发酵中后期代谢网络的代谢流分布。结果:在L-组氨酸分批发酵过程中,在发酵初期未添加柠檬酸钠的条件下流向戊糖磷酸途径(HMP)的代谢流为9.59,合成组氨酸的代谢流为8.91;在发酵初期添加2g/L柠檬酸钠的条件下流向HMP的代谢流为12.74,合成组氨酸的代谢流为9.61。结论:在发酵初期添加柠檬酸钠能够改变L-组氨酸生物合成途径的关键节点6-磷酸葡萄糖、丙酮酸及乙酰辅酶A的代谢流分布,保持糖酵解途径、三羧酸循环与HMP之间代谢流量平衡,有利于提高L-组氨酸生物合成途径的代谢流量,最终使流向组氨酸的代谢流增加了7.86%。  相似文献   

9.
基于过程参数相关分析的鸟苷发酵过程优化   总被引:9,自引:1,他引:8  
本文分析鸟苷产生菌枯草芽孢杆菌(Bacilus subtilis)在50L多参数自控发酵罐上的发酵过程特点,基于多种在线及离线参数的检测,通过相关分析将生理调控的工艺参数和生物合成过程中的代谢流分布相联系,发现了发酵过程中的代谢流向糖酵解和TCA循环的迁移,并初步分析了产生代谢流迁移的原因,在此基础上优化发酵过程使产苷水平稳定在30g/L。  相似文献   

10.
为更全面深入地理解细胞内谷氨酸代谢的调控机制,以黄色短杆菌GDK-9为供试菌株,应用MATLAB软件和代谢流分析方法定量研究添加苹果酸后L-谷氨酸发酵中、后期胞内的代谢流迁移。在L-谷氨酸发酵中、后期添加2.0g/L苹果酸后,合成副产物L-丙氨酸和乳酸的代谢流量明显减少,分别降低了22.1%和16.5%,EMP途径和乙醛酸循环的代谢流分别减少了2.26%和9.09%,HMP途径的代谢流增加了2.26%,而L-谷氨酸生物合成的代谢流从73.59%增长至79.92%,较未添加前提高了6.33%。添加适量苹果酸能使关键节点发生代谢流迁移,提高了L-谷氨酸合成中心代谢途径的代谢流量。  相似文献   

11.
Glycolysis is the primary metabolic pathway in all living organisms. Maintaining the balance of glycolysis flux and biosynthetic pathways is the crucial matter involved in the microbial cell factory. Few regulation systems can address the issue of metabolic flux imbalance in glycolysis. Here, we designed and constructed a bifunctional glycolysis flux biosensor that can dynamically regulate glycolysis flux for overproduction of desired biochemicals. A series of positive-and negative-response biosensors were created and modified for varied thresholds and dynamic ranges. These engineered glycolysis flux biosensors were verified to be able to characterize in vivo fructose-1,6-diphosphate concentration. Subsequently, the biosensors were applied for fine-tuning glycolysis flux to effectively balance the biosynthesis of two chemicals: mevalonate and N-acetylglucosamine. A glycolysis flux-dynamically controlled Escherichia coli strain achieved a 111.3 g/L mevalonate titer in a 1L fermenter.  相似文献   

12.
鸟苷发酵过程代谢流迁移的分析   总被引:7,自引:0,他引:7  
以典型的代谢控制发酵产品鸟苷为例说明了一种基于过程参数的相关分析来研究发酵过程中代谢流迁移的方法。通过对发酵过程多参数的相关性分析,结合生物合成代谢途径、氨基酸和有机酸积累的分析,确认了发酵过程代谢流向EMP途径的迁移,认为造成这种代谢流迁移的原因可能是过程铵离子积累。在此基础上,通过对过程参数实时检测分析和及时调整EMP和HMP代谢通量使产率提高了35%。   相似文献   

13.
L-异亮氨酸发酵代谢分析   总被引:7,自引:0,他引:7  
通过在5L自控发酵罐上对L-异亮氨酸的发酵过程进行研究,分析了发酵基本特征,并结合菌体形态及发酵控制参数的变化,指出发酵过程中代谢流流向及代谢平衡和可能存在的代谢流迁移,为进一步发酵条件优化和分阶段控制发酵研究奠定基础。  相似文献   

14.
麦芽糖和葡萄糖对粪产碱杆菌发酵合成凝胶多糖有着显著的影响,为了详细分析两种底物对凝胶多糖合成的影响机制,利用恒化培养实验及稳态碳平衡代谢分析,研究发现在稀释速率为0.1h-1时,利用麦芽糖和葡萄糖为碳源底物的条件下粪产碱杆菌的微观代谢途径通量有较大的差异。以麦芽糖为底物时凝胶多糖的摩尔得率为53.8%,比葡萄糖为碳源时的摩尔得率(36.9%)高出了45.8%以上。同时以麦芽糖为碳源时HMP途径的绝对代谢通量比葡萄糖时的通量提升了40%以上。这条途径通量的增加,提升了NADPH还原力供给速率,促进了依赖于还原力NADPH的凝胶多糖合成途径通量,提升了碳源底物向产物的摩尔转化速率。而且代谢流分析结果显示ED途径通量和能量提供也是影响粪产碱杆菌凝胶多糖合成效率的关键因素。麦芽糖作为碳源底物过程中维持的较低的残留葡萄糖浓度解除了高葡萄糖浓度条件下对凝胶多糖合成的抑制,能够实现更高通量的ATP能量提供效率,更加促进了凝胶多糖合成通量。  相似文献   

15.
考察谷氨酸棒状杆菌ATCC13032Δldh厌氧产丁二酸的发酵条件。结果发现:补加NaHCO3的效果最好,并且考察了NaHCO3浓度对葡萄糖转化速率及丁二酸生成速率的影响。运用代谢流分析方法分析了乳酸脱氢酶基因敲除对谷氨酸棒状杆菌厌氧代谢的影响,发现乳酸脱氢酶基因敲除导致磷酸烯醇式丙酮酸生成丁二酸的流量提高了214.3%,流向乳酸的流量变为0;分批厌氧转化36 h生成41.2 g/L丁二酸,产率45.0%。  相似文献   

16.
In glutamate fermentations by Corynebacterium glutamicum, higher glutamate concentration could be achieved by constantly controlling dissolved oxygen concentration (DO) at a lower level; however, by-product lactate also severely accumulated. The results of analyzing activities changes of the two key enzymes, glutamate and lactate dehydrogenases involved with the fermentation, and the entire metabolic network flux analysis showed that the lactate overproduction was because the metabolic flux in TCA cycle was too low to balance the glucose glycolysis rate. As a result, the respiratory quotient (RQ) adaptive control based “balanced metabolic control” (BMC) strategy was proposed and used to regulate the TCA metabolic flux rate at an appropriate level to achieve the metabolic balance among glycolysis, glutamate synthesis, and TCA metabolic flux. Compared with the best results of various DO constant controls, the BMC strategy increased the maximal glutamate concentration by about 15% and almost completely repressed the lactate accumulation with competitively high glutamate productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号