首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high-shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained when PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible. The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress-strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.  相似文献   

2.
Huang M  Fang Y 《Biopolymers》2006,81(3):160-166
The graft copolymer chitosan-g-poly(vinyl alcohol), with nontoxicity, biodegradability, and biocompatibility, was prepared by a novel method. The copolymer with porous net structure was observed by scanning electron microscopy (SEM). It is a potential method to combine chitosan with the synthetic polymers. The grafting reactions were conducted with various poly(vinyl alcohol) (PVA)/6-O-succinate-N-phthaloyl-chitosan (PHCSSA) feed ratios to obtain chitosan-g-poly(vinyl alcohol) copolymers with various PVA contents. The chemical structure of the chitosan-g-poly(vinyl alcohol) was characterized by Fourier transform infrared and nuclear magnetic resonance (NMR) spectroscopy. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and SEM were also detected to characterize the copolymer.  相似文献   

3.
Chondrocytes are easily de-differentiated when cultured in monolayer, and tissue-engineered cartilage can be generated by seeding chondrocytes onto three-dimensional porous synthetic biodegradable polymers. In this study, we investigated the biochemical and molecular aspects of chondrocytes in a monolayer-culture system and selected the optimal subculture passages based on their de-differentiation. We also compared two commonly used synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA), for their suitability as scaffolds for artificial cartilage. De-differentiated chondrocytes were observed after two passages. These results suggested that the first cell passage was optimal for seeding as only a few chondrocytes secreted extracellular matrix components to form homogeneously compact cartilage. Substantially increased glycosaminoglycan and total collagen levels revealed that PLGA scaffolds were a better option for inducing cartilage tissue formation compared to the PLA scaffolds. Histological and immunohistochemical results showed that chondrocytes seeded into PLGA retained their morphological phenotype to a greater extent than those seeded into PLA.  相似文献   

4.
A series of porous polyurethane (PU) microparticles from poly(vinyl alcohol) (PVA) and hexamethylene diisocyanate (HMDI) using different ratios of components were obtained by one step method. Molar compositions of PU microparticles were estimated by determination of nitrogen, isocyanate and hydroxyl groups. PU carriers which were synthesized using optimal initial molar ratios of PVA and HMDI were applied for immobilization of maltogenase (MG) from Bacillus stearothermophilus. Immobilized enzyme exhibited higher catalytic activity and enhanced temperature stability in comparison with the native MG. Maximal loading 7.78 mg/g wet carrier was reached when PU microparticles with initial molar ratio of PVA and HMDI = 1:3 was used as a carrier for immobilization. The high efficiency of immobilization (EI) was obtained using PU microparticles when initial molar ratio of HMDI and PVA was 1:1–1:10. High stability of MG immobilized onto PU microparticles during storage was demonstrated. Immobilized starch hydrolyzing enzyme was successfully tested in batch and column type reactors for hydrolysis of potato starch. MG immobilized onto PU enables easy separation from the reaction medium and reuse of the immobilized preparation over seven reaction cycles in bath operation and at least three cycles in column type reactor.  相似文献   

5.
A novel fibrous membrane of carboxymethyl chitin (CMC)/poly(vinyl alcohol) (PVA) blend was successfully prepared by electrospinning technique. The concentration of CMC (7%) with PVA (8%) was optimized, blended in different ratios (0–100%) and electrospun to get nanofibers. Fibers were made water insoluble by chemical followed by thermal cross-linking. In vitro mineralization studies identified the ability of formation of hydroxyapatite deposits on the nanofibrous surfaces. Cytotoxicity of the nanofibrous scaffold was evaluated using human mesenchymal stem cells (hMSCs) by the MTT assays. The cell viability was not altered when these nanofibrous scaffolds were pre-washed with phosphate buffer containing saline (PBS) before seeding the cells. The SEM images also revealed that cells were able to attach and spread in the nanofibrous scaffolds. Thus our results indicate that the nanofibrous CMC/PVA scaffold supports cell adhesion/attachment and proliferation and hence this scaffold will be a promising candidate for tissue engineering applications.  相似文献   

6.
Drug‐eluting stents (DES) were developed to combat the problem of in‐stent restenosis, and evaluating the biological activity from DES systems is critical for its safety and efficacy. To test the cytotoxicity of nitric oxide (NO) donor‐containing polymers for their potential use in DES applications, S‐nitrosoglutathione (GSNO) or in combination with poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) in an aqueous polymeric solution (PVA/PVP/GSNO) was investigated using Balb/c 3T3 and Rabbit arterial smooth muscle (RASM) cells. The sensitivity of 3T3 cells to the cytotoxicity effects induced by GSNO was higher than that of RASM cells, while RASM cells were more susceptible to alterations in membrane permeability. Cell growth assays showed that GSNO and PVA/PVP/GSNO induced antiproliferative effects in RASM cells. Moreover, the presence of polymers can reduce the cytotoxicity and enhance the antiproliferative effects of GSNO. Dose‐dependent inhibition of platelet aggregation was similar for both PVA/PVP/GSNO (EC50 of 3.4 ± 2.3 µM) and GSNO (EC50 of 2.8 ± 1.1 µM) solutions. Platelet adhesion assays showed that the inhibition caused by GSNO (EC50 of 5.0 mM) was dependent on the presence of plasma. These results demonstrate that the methodology adopted here is suitable to establish safety margins and evaluate the antithrombotic potential and antiproliferative effects of NO‐eluting biomaterials and polymeric solutions for the new cardiovascular devices, and also to emphasize the importance of using more specific cell lines in these evaluations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Nanofibers were prepared by electrospinning from pure polyvinyl alcohol (PVA), polyhydroxybutyrate (PHB), and their blends. Miscibility and morphology of both polymers in the nanofiber blends were studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC), revealing that PVA and PHB were miscible with good compatibility. DSC also revealed suppression of crystallinity of PHB in the blend nanofibers with increasing proportion of PVA. The hydrolytic degradation of PHB was accelerated with increasing PVA fraction. Cell culture experiments with a human keratinocyte cell line (HaCaT) and dermal fibroblast on the electrospun PHB and PVA/PHB blend nanofibers showed maximum adhesion and proliferation on pure PHB. However, the addition of 5 wt % PVA to PHB inhibited growth of HaCaT cells but not of fibroblasts. On the contrary, adhesion and proliferation of HaCaT cells were promoted on PVA/PHB (50/50) fibers, which inhibited growth of fibroblasts.  相似文献   

8.
Microparticle powders for nasal delivery were formulated to contain the model drug, zolmitriptan, and varying proportions of different polymers. The objective of the study was to investigate the effects of these formulative parameters on the surface chemistry of the spray-dried microparticles and their potential for adhesion to the tested substrates, porcine mucin, and nasal tissue. The polymers used were chitosans of varying ionization states and molecular weights and hydroxypropyl methyl cellulose. The surface energies of the surfaces of the microparticles were determined using contact angle measurements and the van Oss model. The theory of surface thermodynamics was applied to determine the theoretical potential for the different materials to adhere to the substrates. It was found that the drug or polymers alone, as well as the various formulations, were more likely to adhere to mucin than to nasal tissue. Further, there was a trend for higher molecular weight chitosans to adhere better to the substrates than lower molecular weight chitosans. Similarly, adhesion was improved for formulations with a higher content of polymers. These theoretical predictions may be compared with further experimental results and be of use in making informed decisions on the choice of formulations for future expensive bio-studies.  相似文献   

9.
Zhou Y  Yang D  Chen X  Xu Q  Lu F  Nie J 《Biomacromolecules》2008,9(1):349-354
Biocompatible carboxyethyl chitosan/poly(vinyl alcohol) (CECS/PVA) nanofibers were successfully prepared by electrospinning of aqueous CECS/PVA solution. The composite nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of CECS/PVA. XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CECS and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The potential use of the CECS/PVA electrospun fiber mats as scaffolding materials for skin regeneration was evaluated in vitro using mouse fibroblasts (L929) as reference cell lines. Indirect cytotoxicity assessment of the fiber mats indicated that the CECS/PVA electrospun mat was nontoxic to the L929 cell. Cell culture results showed that fibrous mats were good in promoting the cell attachment and proliferation. This novel electrospun matrix would be used as potential wound dressing for skin regeneration.  相似文献   

10.
Zhang P  Wu H  Wu H  Lù Z  Deng C  Hong Z  Jing X  Chen X 《Biomacromolecules》2011,12(7):2667-2680
Various surface modification methods of RGD (Arg-Gly-Asp) peptides on biomaterials have been developed to improve cell adhesion. This study aimed to examine a RGD-conjugated copolymer RGD/MPEG-PLA-PBLG (RGD-copolymer) for its ability to promote bone regeneration by mixing it with the composite of poly(lactide-co-glycotide) (PLGA) and hydroxyapatite nanoparticles surface-grafted with poly(L-lactide) (g-HAP). The porous scaffolds were prepared using solvent casting/particulate leaching method and grafted to repair the rabbit radius defects after seeding with autologous bone marrow mesenchymal cells (MSCs) of rabbits. After incorporation of RGD-copolymer, there were no significant influences on scaffold's porosity and pore size. Nitrogen of RGD peptide, and calcium and phosphor of g-HAP could be exposed on the surface of the scaffold simultaneously. Although the cell viability of its leaching liquid was 92% that was lower than g-HAP/PLGA, its cell adhesion and growth of 3T3 and osteoblasts were promoted significantly. The greatest increment in cell adhesion ratios (131.2-157.1% higher than g-HAP/PLGA) was observed when its contents were 0.1-1 wt % but only at 0.5 h after cell seeding. All the defects repaired with the implants were bridged after 24 weeks postsurgery, but the RGD-copolymer contained composite had larger new bone formation and better fusion interface. The composites containing RGD-copolymer enhanced bone ingrowth but presented more woven bones than others. The combined application of RGD-copolymer and bone morphological protein 2 (BMP-2) exhibited the best bone healing quality and was recommended as an optimal strategy for the use of RGD peptides.  相似文献   

11.
聚乙烯醇的生物降解   总被引:3,自引:0,他引:3  
聚乙烯醇(PVA)是较少的可溶于水并被生物降解的乙烯聚合物之一。研究表明,在受PVA污染的自然环境中存在着能降解PVA的微生物,并从中提取出了PVA降解酶。介绍了国内外研究聚乙烯醇生物降解的情况。分别讨论了聚乙烯醇被单一菌种、共生细菌和真菌降解过程中的生物化学和生理学特性,以及结构因素对聚乙烯醇生物降解的影响。这些研究促进了可有效生物降解的PVA类材料产品项目的发展。  相似文献   

12.
Three-dimensional (3-D) culture of cancer cells and of normal mammalian cells in a polymeric matrix is generally a better alternate model for understanding the regulation of cancer cell proliferation and for evaluation of different anticancer drugs. A substantial amount of evidence demonstrates important differences in the behavior of cells grown in monolayer, i.e., two-dimensional (2-D), and in 3-D cultures. Cancer cells grown in 3-D culture are more resistant to cytotoxic agents than cells in 2-D culture; growth of cells in vitro in 3-D requires a suitable polymer that provides a structural scaffold for cell adhesion and growth. Many naturally derived polymers as well as synthetic polymers have been investigated as scaffolds. The aim of this review is to overview the polymeric materials of natural and synthetic origin that are of specific interest to 3-D cell cultures, and discuss the development of new polymers that should be specifically designed for 3-D culture applications.  相似文献   

13.
Glycoconjugate polymers with poly(vinyl alcohol) (PVA) backbone were synthesized via a chemoenzymatic method. The sugar alcohols of maltose and lactose were submitted to transesterification in the presence of lipases. The esterification was achieved with high selectivity and yield, and the resulting maltitol and lactitol 6-vinyl sebacates were polymerized by a conventional radical initiator with hydrogen peroxide and ascorbic acid. The glycoconjugate polymers carrying alpha-glucose and beta-galactose as recognition signals showed the biological activity such as lectin recognition abilities and hepatocyte adhension. The biodegradability of these polymers was modest but higher than PVA.  相似文献   

14.
Liu SQ  Yang YY  Liu XM  Tong YW 《Biomacromolecules》2003,4(6):1784-1793
Temperature-sensitive diblock copolymers, poly(N-isopropylacrylamide)-b-poly(D,L-lactide) (PNIPAAm-b-PLA) with different PNIPAAm contents were synthesized and utilized to fabricate microspheres containing bovine serum albumin (BSA, as a model protein) by a water-in-oil-in-water double emulsion solvent evaporation process. XPS analysis showed that PNIPAAm was a dominant component of the microspheres surface. BSA was well entrapped within the microspheres, and more than 90% encapsulation efficiency was achieved. The in vitro degradation behavior of microspheres was investigated using SEM, NMR, FTIR, and GPC. It was found that the microspheres were erodible, and polymer degradation occurred in the PLA block. Degradation of PLA was completed after 5 months incubation in PBS (pH 7.4) at 37 degrees C. A PVA concentration of 0.2% (w/v) in the internal aqueous phase yielded the microspheres with an interconnected porous structure, resulting in fast matrix erosion and sustained BSA release. However, 0.05% PVA produced the microspheres with a multivesicular internal structure wrapped with a dense skin layer, resulting in lower erosion rate and a biphasic release pattern of BSA that was characterized with an initial burst followed by a nonrelease phase. The microspheres made from PNIPAAm-b-PLA with a higher portion of PNIPAAm provided faster BSA release. In addition, BSA release from the microspheres responded to the external temperature changes. BSA release was slower at 37 degrees C (above the LCST) than at a temperature below the LCST. The microspheres fabricated with PNIPAAm-b-PLA having a 1:5 molar ratio of PNIPAAm to PLA and 0.2% (w/v) PVA in the internal aqueous phase provided a sustained release of BSA over 3 weeks in PBS (pH 7.4) at 37 degrees C.  相似文献   

15.
The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4 × 10−2 MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30–60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold.  相似文献   

16.
Biodegradabilities of N-acetyl-d-glucosamine (GlcNAc)- (1) and chitobiose-substituted (2) poly(vinyl alcohol)s (PVA)s in a soil suspension (pH 6.5) were investigated at 25 degrees C for 40 days. Biochemical oxygen demand of 1 with a degree of substitution of 0.2-0.3 (DP = 430-480) was higher than that of PVA under the degradation condition. Size exclusion chromatography, (1)H NMR, and Fourier-transform infrared measurements of the recovered sample indicated that biodegradation of the PVA main chain was accelerated by partial glycosidation of hydroxyl groups in PVA. Similar acceleration was observed in a PVA/GlcNAc (50:50, w/w) mixture. Microbes which relate with degradation of the glycosidated polymers were grown in a culture medium including the soil suspension and the polymer as the carbon source. Polyacrylamide gel electrophoresis (SDS-PAGE) and IR measurements indicated that a cell-free extract derived from GlcNAc-substituted PVA was different from that in the PVA/GlcNAc mixture. The results suggested that the PVA main chain in GlcNAc-substituted PVA was cleaved by a different microorganism or via a mechanism different from that in the mixture. Chitobiose-substituted PVA 2 showed more enhanced acceleration, indicating that the sugar length influenced the degradability.  相似文献   

17.
Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.  相似文献   

18.
Newly developed fabrication technique of thermoresponsive surface using RAFT-mediated block copolymerization and photolithography achieved stripe-like micropatterning of poly(N-isopropylacrylamide) (PIPAAm) brush domains and poly(N-isopropylacrylamide)-b-poly(N-acryloylmorpholine) domains. Normal human dermal fibroblasts were aligned on the physicochemically patterned surfaces simply by one-pot cell seeding. Fluorescence images showed the well-controlled orientation of actin fibers and fibronectin in the confluent cell layers with associated extracellular matrix (ECM) on the surfaces. Furthermore, the aligned cells were harvested as a tissue-like cellular monolayer, called "cell sheet" only by reducing temperature below PIPAAm's lower critical solution temperature (LCST) to 20 °C. The cell sheet harvested from the micropatterned surface possessed a different shrinking rate between vertical and parallel sides of the cell alignment (approximately 3:1 of aspect ratio). This indicates that the cell sheet maintains the alignment of cells and related ECM proteins, promising to show the mechanical and biological aspects of cell sheets harvested from the functionalized thermoresponsive surfaces.  相似文献   

19.
This study examined the application of previously characterized microparticles composed of hyaluronan (HA) and chitosan hydroglutamate (CH) as well as novel microparticles consisting of both polymers (HA/CH) to improve the nasal delivery of a model drug. The rabbit bioavailabilities of gentamicin incorporated in HA, CH, and HA/CH microparticles were increased 23-, 31-, and 42-fold, respectively, compared with the control intranasal solution of gentamicin, indicating that all test microparticles were retained for longer periods on the nasal mucosa of the rabbits as supported by previous in vitro dissolution as well as frog palate mucoadhesion studies, thereby improving drug absorption. The higher bioavailabilities of CH-based formulations (CH and HA/CH) suggest the penetration-enhancing effects of CH may also be partially responsible for the improvement. A model was developed, based on a glass impinger device, to deliver dry powder formulations reproducibly onto the surface of cultured cell monolayers. In vitro permeability and fluorescence microscopy studies on the tight junctions of the 16HBE14o- cell lines further confirmed the ability of CH-based formulations to enhance penetration. Furthermore, the in vitro absorption profile from cell culture studies was consistent with those determined from in vivo studies. The complementary effect from the mucoadhesive nature of HA coupled with the penetration-enhancing effects of CH makes the novel HA/CH formulation a promising nasal delivery system.  相似文献   

20.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号