首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Novel artificial extracellular matrices were synthesized in the form of semi-interpenetrating polymer networks containing copolymers of poly(ethylene glycol) and acrylic acid (PEG-co-AA) grafted with synthetic bioadhesive peptides onto exposed carboxylic acid moieties. These substrates were very resistant to cell adhesion, but when they were grafted with adhesive peptides they were highly biospecific in their ability to support cell adhesion. Extensive preadsorption of adhesive proteins or peptides did not render these materials cell adhesive; yet covalent grafting of adhesive peptides did render these materials highly cell adhesive even in the absence of serum proteins. Polymer networks containing immobilized PEG-co-AA were grafted with peptides at densities of 475 +/- 40 pmol/cm(2). Polymer networks containing immobilized PEG-co-AA N-terminally grafted with GRGDS supported cell adhesion efficiencies of 42 +/- 4% 4 h after seeding and became confluent after 12 h. These cells displayed cell spreading and cytoskeletal grafted with inactive control peptides (GRDGS, GRGES, or no peptide) supported cell adhesion efficiencies of 0 +/- 0%, even when challenged with high seeding densities (to 100,000 cell/cm(2)) over 14 days. These polymer networks are suitable substrates to investigate in vitro cell-surface interactions in the presence of serum proteins without nonspecific protein adsorption adhesion signals other than those immobilized for study.  相似文献   

2.
Deng C  Tian H  Zhang P  Sun J  Chen X  Jing X 《Biomacromolecules》2006,7(2):590-596
Advances in tissue engineering require biofunctional scaffolds that can provide not only physical support for cells but also chemical and biological cues needed in forming functional tissues. To achieve this goal, a novel RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) (PEG-PLA-PGL/RGD) was synthesized in four steps (1) to prepare diblock copolymer PEG-PLA-OH and to convert its -OH end group into -NH(2) (to obtain PEG-PLA-NH(2)), (2) to prepare triblock copolymer PEG-PLA-PBGL by ring-opening polymerization of NCA (N-carboxyanhydride) derived from benzyl glutamate with diblock copolymer PEG-PLA-NH(2) as macroinitiator, (3) to remove the protective benzyl groups by catalytic hydrogenation of PEG-PLA-PBGL to obtain PEG-PLA-PGL, and (4) to react RGD (arginine-glycine-(aspartic amide)) with the carboxyl groups of the PEG-PLA-PGL. The structures of PEG-PLA-PGL/RGD and its precursors were confirmed by (1)H NMR, FT-IR, amino acid analysis, and XPS analysis. Addition of 5 wt % PEG-PLA-PGL/RGD into a PLGA matrix significantly improved the surface wettability of the blend films and the adhesion and proliferation behavior of human chondrocytes and 3T3 cells on the blend films. Therefore, the novel RGD-grafted triblock copolymer is expected to find application in cell or tissue engineering.  相似文献   

3.
We investigated the migration of rat calvaria osteoblast populations on poly(alpha-hydroxy ester) films for up to 14 days to determine effects of substrate composition and culture conditions on the migratory characteristics of osteoblasts. Initial osteoblast culture conditions included cell colonies formed by seeding a high (84,000 cells/cm(2)) or low (42,000 cells/cm(2)) density of isolated osteoblasts on the polymer films, and bone tissue cultures formed by plating bone chips directly on the substrates. High density osteoblast colonies cultured and allowed to migrate and proliferate radially on 85:15 poly(DL-lactic-co-glycolic acid) (PLGA) films, 75:25 PLGA films, and tissue culture polystyrene controls demonstrated that the copolymer ratio in the polymer films did not affect the rate of increase in substrate surface area (or culture area) covered by the growing cell colony. However, the rate of increase in culture area was dependent on the initial osteoblast seeding density. Initial cell colonies formed with a lower osteoblast seeding density on 75:25 PLGA resulted in a lower rate of increase in culture area, specifically 4.9 +/- 0.3 mm(2)/day, versus 14.1 +/- 0.7 mm(2)/day for colonies seeded with a higher density of cells on the same polymer films. The proliferation rate for osteoblasts in the high and low density seeded osteoblast colonies did not differ, whereas the proliferation rate for the osteoblasts arising from the bone chips was lower than either of these isolated cell colonies. Confocal and light microscopy revealed that the osteoblast migration occurred as a monolayer of individual osteoblasts and not a calcified tissue front. These results demonstrated that cell seeding conditions strongly affect the rates of osteoblast migration and proliferation on biodegradable poly(alpha-hydroxy esters). (c) 1996 John Wiley & Sons, Inc.  相似文献   

4.
We examined the binding capacity of anti-metastatic polypeptide containing repetitive Arg-Gly-Asp(RGD) sequence derived from cell binding site of fibronectin, poly(RGD), to the surface of tumor cells. Poly(RGD) competitively inhibited the binding of radiolabeled fibronectin to the cell surface more potently than oligo(RGD) or RGD tripeptide on a molar basis. Compared on a weight basis to oligo(RGD) or RGD peptide, poly(RGD) was more active than the oligo- and monomeric peptide at inhibiting tumor cell adhesion to immobilized fibronectin. The secondary structure of poly(RGD) was predicted to be a beta-turn from the data of CD spectra and its amino acid sequence. These findings suggest that poly(RGD)-mediated inhibition of cell adhesion is due to its potent binding capacity to fibronectin receptors on cell surface probably through its conformational properties.  相似文献   

5.
In an effort to regulate the behavior of mammalian cell entrapped in a gel, the gels were functionalized with the putative cell-binding (-Arg-Gly-Asp-) (RGD) domain. The adhesion molecules composed of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides and the cell recognition ligands were inculcated into the thermo-reversible hydrogel composed of N-isopropylacrylamide, with a small amount of succinyl poly(ethylene glycol) (PEG) acrylate (MW 2000) used as the biomimetic extracellular matrix (ECM). The GRGDS-containing p(NiPAAm-co-PEG) copolymer gel was examined in vitro for its ability to promote cell spreading and to increase the viability of the cells by introducing PEG spacers. ECM poorly adhered to hydrogel lacking adhesion molecules permitting only a 20% spread of the seeded cells after 10 days. When the PEG spacer arms, which were immobilized by a peptide linkage, had been integrated into the hydrogel, the conjugation of RGD improved cell spreading by 600% in a 10-day trial.  相似文献   

6.
Adhesion molecules composed of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides and cell recognition ligands were inculcated into thermo-reversible hydrogel composed of N-isopropylacrylamide, with a small amount of succinyl poly(ethylene glycol) (PEG) acrylate (MW 3400) used as a biomimetic extracellular matrix (ECM). The GRGDS-containing p(NiPAAm-co-PEG) copolymer gel was studied in vitro for its ability to promote cell spreading and to increase the viability of cells by introducing PEG spacers. Hydrogel lacking the adhesion molecules proved to be a poor ECM for adhesion, permitting only a 20% spread of the seeded cells after 10 days. When PEG spacer arms, immobilized by a peptide linkage, had been integrated into the hydrogel, conjugation of RGD promoted cell spread by 600% in a 10-day trial. In addition, in a serum-free medium, only GRGDS peptides conjugated with the spacer arm were able to promote cell spread. In terms of the cell viability, GRGDS peptides conjugated with the PEG-carrying copolymer gel specifically mediated cell spread. This result supports the theory that specific recognition is the result of interaction between the integrin families on the fibroblast, and the RGD sequence on the p(NiPAAm-co-PEG) copolymer gel.  相似文献   

7.
The RGD sequence is present in many extracellular matrix proteins and intracellular proteins, including caspases. Synthetic RGD peptides may affect adhesion, migration and tumour metastasis, or directly induce apoptosis. Several RGD peptides were synthesised, and their anti-adhesive and cytotoxic properties were analysed in vitro. The most active peptide (poly RGD) was also tested in vivo to assess its modulatory activity on melanoma growth. Synthetic RGD peptides inhibit the adhesion of Ab melanoma cells to fibronectin. Poly RGD significantly inhibits primary tumour growth. There was no observed cytotoxicity of poly RGD towards Ab cells in a medium with 10% serum; however, under the same conditions, the anti-adhesive effect of poly RGD was still visible. Experiments on Jurkat cells indicated a weak cytotoxicity of poly RGD and a significant cytotoxicity of GRGDNP (the reference cytotoxic peptide), retained only under serum-free conditions. The anti-tumour effect of poly RGD observed in the Ab Bomirski melanoma model is probably due to an anti-adhesive mechanism. The proapoptotic activity of RGD peptides is dependent on the absence of serum.  相似文献   

8.
Semi-interpenetrating networks (semi-IPNs), where poly(lactide-co-glycolide) (PLGA) molecules were entrapped in the crosslinked matrices of poly(3-hydroxyundecenoate) (PHU), were prepared by irradiating homogeneous solutions of PHU and PLGA in chloroform with UV light. Attenuated total reflectance infrared spectroscopy showed that the PLGA chains were entrapped in PHU networks. The semi-IPNs showed enhanced mechanical strength as the PLGA content increased. The semi-IPNs were incubated at 37 °C in a 0.01N NaOH solution, and the extent of hydrolytic degradation was investigated by monitoring changes in various parameters such as water uptake, pH, mass, and morphology. Hydrolysis of semi-IPNs were significantly affected by the presence of PLGA. A semi-IPN prepared from a 9:1 (by weight) mixture of PHU and PLGA lost 25% of its original weight in 12 weeks while a PHU sample containing no PLGA lost only 5% of its weight during the same period under identical conditions. The hydrolysis was most likely accelerated when the pH of the medium was lowered by the hydrolyzed products of PLGA, 2-hydroxyalkanoic acids. These results showed that hydrolysis of PHA could be enhanced by incorporating a second component that lowered the pH of the hydrolysis system.  相似文献   

9.
Poly-(lactide-co-glycolide) (PLGA) is an FDA-approved biodegradable polymer which has been widely used as a scaffold for tissue engineering applications. Collagen has been used as a coating material for bone contact materials, but relatively little interest has focused on biomimetic coating of PLGA with extracellular matrix components such as collagen and the glycosaminoglycan chondroitin sulfate (CS). In this study, PLGA films were coated with collagen type I or collagen I with CS (collagen I/CS) to investigate the effect of CS on the behaviour of the osteoblastic cell line MG 63. Collagen I/CS coatings promoted a significant increase in cell number after 3 days (in comparison to PLGA) and after 7 days (in comparison to PLGA and collagen-coated PLGA). No influence of collagen I or collagen I/CS coatings on the spreading area after 1 day of culture was observed. However, the cells on collagen I/CS formed numerous filopodia and displayed well developed vinculin-containing focal adhesion plaques. Moreover, these cells contained a significantly higher concentration of osteocalcin, measured per mg of protein, than the cells on the pure collagen coating. Thus, it can be concluded that collagen I/CS coatings promote MG 63 cell proliferation, improve cell adhesion and enhance osteogenic cell differentiation.  相似文献   

10.
《IRBM》2007,28(1):2-12
The aim of this study was to evaluate the impact of RGD micro-patterned poly(ethylene terephthalate) (PET) on human osteoblast progenitor (HOP) cells attachment. Biomimetic modifications were performed by means of a four-step reaction: surface hydrolysis, oxidation in order to create COOH functions, coupling agent grafting (EDC, NHS) and finally immobilization of peptides. In addition to homogeneous or statistically distribution of peptides, micro-patterns of RGD were generated by: optical photolithography and UV excimer laser ablation. Modification steps were validated by physico-chemical techniques: XPS was used to prove covalent grafting at each stage of the surface functionalization, toluidine blue assay and high resolution µ-imager (using [3H]-Lys) to evaluate peptide densities and validate micro-patterns formation. Finally, the efficiency of this biomodification of PET was demonstrated onto homogeneous surfaces by measuring the adhesion between 1 and 24 h of osteoprogenitor cells isolated from HBMSC.  相似文献   

11.
Fibronectin contains the active sequence Arg-Gly-Asp (RGD), along with its synergic site Pro-His-Ser-Arg-Asn (PHSRN). However, the PHSRN peptide does not show synergic activity when it is mixed with the RGD peptide, indicating that a spatial array between RGD and PHSRN in fibronectin may be necessary for synergic activity. Here, we have used an amino acid type poly(ethylene glycol) derivative (aaPEG) to design a bivalent PEG hybrid of fibronectin active peptides. We prepared the aaPEG hybrid peptides PHSRN-aaPEG, aaPEG-RGD, and PHSRN-aaPEG-RGD, and tested their biological activity. Whereas aaPEG-RGD promoted cell spreading activity, PHSRN-aaPEG had no activity. The PHSRN-aaPEG-RGD hybrid strongly promoted cell spreading compared with aaPEG-RGD. These results suggest that the PHSRN sequence in the PHSRN-aaPEG-RGD molecule synergistically enhances the cell spreading activity of the RGD sequence, and that the bivalent aaPEG hybrid method may be useful for conjugating functionally active peptides.  相似文献   

12.
The purpose of this research was to assess the physicochemical properties of a controlled release formulation of recombinant human growth hormone (rHGH) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) composite microspheres. rHGH was loaded in poly(acryloyl hydroxyethyl) starch (acHES) microparticles, and then the protein-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction/evaporation method. rHGH-loaded PLGA microspheres were also prepared using mannitol without the starch hydrogel microparticle microspheres for comparison. The detection of secondary structure changes in protein was investigated by using a Fourier Transfer Infrared (FTIR) technique. The composite microspheres were spherical in shape (44.6±2.47 μm), and the PLGA-mannitol microspheres were 39.7±2.50 μm. Drug-loading efficiency varied from 93.2% to 104%. The composite microspheres showed higher overall drug release than the PLGA/mannitol microspheres. FTIR analyses indicated good stability and structural integrity of HGH localized in the microspheres. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

13.
In the last 10 years, biodegradable aliphatic polyesters, such as poly(lactic-co-glycolic acid) (PLGA), have attracted increasing attention for their use as scaffold materials in bone tissue engineering because their degradation products can be removed by natural metabolic pathways. However, one main concern with the use of these specific polymers is that their degradation products reduce local pH, which in turn induces an inflammatory reaction and damages bone cell health at the implant site. Thus, the objective of the present in vitro study was to investigate the degradation behavior of PLGA when added with dispersed titania nanoparticles. The results of this study provided the first evidence that the increased dispersion of nanophase titania in PLGA decreased the harmful change in pH normal for PLGA degradation. Moreover, previous studies have demonstrated that the increased dispersion of titania nanoparticles into PLGA significantly improved osteoblast (bone-forming cell) functions (such as adhesion, collagen synthesis, alkaline phosphatase activity, and calcium-containing minerals deposition). In this manner, nanophase titania-PLGA composites may be promising scaffold materials for more effective orthopedic tissue engineering applications.  相似文献   

14.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
The extracellular matrix (ECM) is an attractive model for designing synthetic scaffolds with a desirable environment for tissue engineering. Here, we report on the synthesis of ECM-mimetic poly(ethylene glycol) (PEG) hydrogels for inducing endothelial cell (EC) adhesion and capillary-like network formation. A collagen type I-derived peptide GPQGIAGQ (GIA)-containing PEGDA (GIA-PEGDA) was synthesized with the collagenase-sensitive GIA sequence attached in the middle of the PEGDA chain, which was then copolymerized with RGD capped-PEG monoacrylate (RGD-PEGMA) to form biomimetic hydrogels. The hydrogels degraded in vitro with the rate dependent on the concentration of collagenase and also supported the adhesion of human umbilical vein ECs (HUVECs). Biomimetic RGD/GIA-PEGDA hydrogels with incorporation of 1% RGD-PEGDA into GIA-PEGDA hydrogels induced capillary-like organization when HUVECs were seeded on the hydrogel surface, while RGD/PEGDA and GIA-PEGDA hydrogels did not. These results indicate that both cell adhesion and biodegradability of scaffolds play important roles in the formation of capillary-like networks.  相似文献   

16.
Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif   总被引:34,自引:0,他引:34  
The tripeptide Arg-Gly-Asp (RGD) was originally identified as the sequence within fibronectin that mediates cell attachment. The RGD motif has now been found in numerous other proteins and supports cell adhesion in many, but not all, of these. The integrins, a family of cell-surface proteins, act as receptors for cell adhesion molecules. A subset of the integrins recognize the RGD motif within their ligands, the binding of which mediates both cell-substratum and cell-cell interactions. RGD peptides and mimetics, in addition to providing insights into the fundamental mechanisms of cell adhesion, are potential therapeutic agents for the treatment of diseases such as thrombosis and cancer.  相似文献   

17.
Lee JS  Kim SH  Kim YJ  Akaike T  Kim SC 《Biomacromolecules》2005,6(4):1906-1911
A surface of poly(l-lactic acid) (PLLA) was modified by coating with poly[N-p-vinylbenzyl-4-O-beta-d-galactopyranosyl-d-glucoamide] (PVLA), which was employed to improve the hepatocyte adhesion owing to its amphiphilic property and the presence of a hepatocyte recognition motif. We characterized the surface properties through water contact angle, electron spectroscopy for chemical analysis (ESCA), and scanning probe microscopy (SPM). The effect of PVLA coating on the efficiency of hepatocyte adhesion was evaluated by protein assay and optical microscopy. The surface morphology was under the influence of the concentration of PVLA coating solution and it played a critical role in hepatocyte adhesion. It was confirmed that galactose moieties in PVLA, which can bind to the asialoglycoprotein receptor (ASGPR) on hepatocytes, have a more dominant effect on hepatocyte adhesion than enhanced hydrophilicity. We suggest that the PVLA-PLLA system will be a useful method to improve hepatocyte cell seeding and adhesion onto scaffold matrices.  相似文献   

18.
Copolymers composed of an Arg-Gly-Asp (RGD) sequence for the adhesion molecule and sugar moieties were synthesized for an insulinoma cell (MIN6) culture. MIN6 cells attached on the poly(N-p-vinylbenzyl-D-maltonamide-co-6-(p-vinylbenzamido)-hexanoic acid-g-GRGDS) (p(VMA-co-VBGRGDS))-coated dishes were in a more aggregated form than other polymer-coated surfaces. P(VMA-co-VBGRGDS) also shows faster proliferation of MIN6 cells (about 18% higher) than with p(VLA-co-VBGRGDS). By interaction between cell and matrix, about 80% greater insulin secretion from MIN6 cells was produced with the p(VMA-co-VBGRGDS), and about 50% greater insulin secretion was produced with the poly(N-p-vinylbenzyl-D-lactonamide-co-6-(p-vinylbenzamido)-hexanoic acid-g-GRGDS) (p(VLA-co-VBGRGDS) as compared with unstimulated cells. Moreover, attachment of MIN6 cells treated with RGD monomer was suppressed approximately 50% for the p(VMA-co-VBGRGDS) surface. This result supported the idea that conjugation of adhesion molecules of RGD peptide in p(VMA-co-VBGRGDS) copolymer specifically interact with integrin families on MIN6 cell membrane.  相似文献   

19.
In the present study we developed alginate-chitosan-poly(lactic-co-glycolic acid) (PLGA) composite microspheres to elevate protein entrapment efficiency and decrease its burst release. Bovine serum albumin (BSA), which used as the model protein, was entrapped into the alginate microcapsules by a modified emulsification method in an isopropyl alcohol-washed way. The rapid drug releases were sustained by chitosan coating. To obtain the desired release properties, the alginate-chitosan microcapsules were further incorporated in the PLGA to form the composite microspheres. The average diameter of the composite microcapsules was 31+/-9microm and the encapsulation efficiency was 81-87%, while that of conventional PLGA microspheres was just 61-65%. Furthermore, the burst releases at 1h of BSA entrapped in composite microspheres which containing PLGA (50:50) and PLGA (70:30) decreased to 24% and 8% in PBS, and further decreased to 5% and 2% in saline. On the contrary, the burst releases of conventional PLGA microspheres were 48% and 52% in PBS, respectively. Moreover, the release profiles could be manipulated by regulating the ratios of poly(lactic acid) to poly(glycolic acid) in the composite microspheres.  相似文献   

20.
Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery   总被引:1,自引:0,他引:1  
A protein loaded three-dimensional scaffold can be used for protein delivery and bone tissue regeneration. The main objective of this project was to develop recombinant human bone morphogenetic protein-2 (rhBMP-2) loaded poly(D,L-lactide-co-glycolide)/hydroxylapatite (PLGA/HAp) composite fibrous scaffolds through a promising fabrication technique, electrospinning. In vitro release of BMP-2 from these scaffolds, and the attachment ability and viability of marrow derived messenchymal stem cells (MSCs) in the presence of the scaffolds were investigated. The PLGA/HAp composite scaffolds developed in this study exhibit good morphology and it was observed that HAp nanoparticles were homogeneously dispersed inside PLGA matrix within the scaffold. The composite scaffolds allowed sustained (2-8 weeks) release of BMP-2 whose release rate was accelerated with increasing HAp content. It was also shown that BMP-2 protein successfully maintained its integrity and natural conformations after undergoing the process of electrospinning. Cell culture experiments showed that the encapsulation of HAp could enhance cell attachment to scaffolds and lower cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号