首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Defect free mats containing a cationic polysaccharide, chitosan derivative such as N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (HTCC), have been prepared using electrospinning of an aqueous solution of poly(vinyl alcohol) (PVA)-HTCC blends. HTCC, a water-soluble derivative of chitosan, was synthesized via the reaction between glycidyl-trimethylammonium chloride and chitosan. Solutions of PVA-HTCC Blends were electrospun. The morphology, diameter and structure of the produced electrospun nanofibres were examined by scanning electron microscopy (SEM). The average fibre diameter was in the range of 200-600 nm. SEM images showed that the morphology and diameter of the nanofibres were mainly affected by weight ratio of the blend and applied voltage. The results revealed that increasing HTCC content in the blends decreases the average fibre diameter. These observations were discussed on the basis of shear viscosities and conductivities of the spinning solutions. Microbiological assessment showed that the PVA-HTCC mats have a good antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli.  相似文献   

2.
Huang M  Fang Y 《Biopolymers》2006,81(3):160-166
The graft copolymer chitosan-g-poly(vinyl alcohol), with nontoxicity, biodegradability, and biocompatibility, was prepared by a novel method. The copolymer with porous net structure was observed by scanning electron microscopy (SEM). It is a potential method to combine chitosan with the synthetic polymers. The grafting reactions were conducted with various poly(vinyl alcohol) (PVA)/6-O-succinate-N-phthaloyl-chitosan (PHCSSA) feed ratios to obtain chitosan-g-poly(vinyl alcohol) copolymers with various PVA contents. The chemical structure of the chitosan-g-poly(vinyl alcohol) was characterized by Fourier transform infrared and nuclear magnetic resonance (NMR) spectroscopy. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and SEM were also detected to characterize the copolymer.  相似文献   

3.
A multifunctional macromolecular thiol (TPVA) obtained by esterification of poly(vinyl alcohol) (PVA) with 3-mercaptopropionic acid was characterized by a combination of NMR, IR, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC), and was used as a wheat gluten (WG) reactive modifier. The effect of TPVA molecular weight (M(w) = 2000, 9500, 50 000, and 205 000) and blend composition (5, 20, and 40% w/w TPVA/WG) on the mechanical properties of compression-molded bars indicates that TPVA/WG blends increase the fracture strength by up to 76%, the elongation by 80%, and the modulus by 25% above WG. In contrast, typical WG additives such as glycerol and sorbitol improve flexibility but decrease modulus and strength. Preliminary investigations of suspension rheology, water uptake, molecular weight distribution and electron microscopy of TPVA/WG and PVA/WG blends illustrate the different protein interactions with PVA and TPVA. Further work is underway to determine whether TPVA and WG form protein conjugates or microphase-separated morphologies.  相似文献   

4.
Zhou Y  Yang D  Chen X  Xu Q  Lu F  Nie J 《Biomacromolecules》2008,9(1):349-354
Biocompatible carboxyethyl chitosan/poly(vinyl alcohol) (CECS/PVA) nanofibers were successfully prepared by electrospinning of aqueous CECS/PVA solution. The composite nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of CECS/PVA. XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CECS and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The potential use of the CECS/PVA electrospun fiber mats as scaffolding materials for skin regeneration was evaluated in vitro using mouse fibroblasts (L929) as reference cell lines. Indirect cytotoxicity assessment of the fiber mats indicated that the CECS/PVA electrospun mat was nontoxic to the L929 cell. Cell culture results showed that fibrous mats were good in promoting the cell attachment and proliferation. This novel electrospun matrix would be used as potential wound dressing for skin regeneration.  相似文献   

5.
Na YH  He Y  Shuai X  Kikkawa Y  Doi Y  Inoue Y 《Biomacromolecules》2002,3(6):1179-1186
The miscibility and phase behavior of two stereoisomer forms of poly(lactide) (PLA: poly (L-lactide) (PLLA) and poly(DL-lactide) (PDLLA)) blends with poly(epsilon-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and PCL-b-monomethoxy-PEG (PCL-b-MPEG) block copolymers have been investigated by differential scanning calorimetry (DSC). The DSC thermal behavior of both the blend systems revealed that PLA is miscible with the PEG segment phase of PCL-b-(M)PEG but is still immiscible with its PCL segment phase although PCL was block-copolymerized with PEG. On the basis of these results, PCL-b-PEG was added as a compatibilizer to PLA/PCL binary blends. The improvement in mechanical properties of PLA/PCL blends was achieved as anticipated upon the addition of PCL-b-PEG. In addition, atomic force microscopy (AFM) measurements have been performed in order to study the compositional synergism to be observed in mechanical tests. AFM observations of the morphological dependency on blend composition indicate that PLA/PCL blends are immiscible but compatible to some extent and that synergism of compatibilizing may be maximized in the compositional blend ratio before apparent phase separation and coarsening.  相似文献   

6.
This work aimed to overcome chitosan (CS) membrane' drawbacks: mainly stiffness and hydrophobic surface by adding poly(vinyl alcohol) (PVA) and evaluate their biocompatibility. The chemical structure, crystalline and thermal properties were studied by FT-IR, XRD and DSC. The mechanical properties and wettability of CS/PVA membranes were studied by tensile test and static contact angle measurement. In vitro biocompatibility was also evaluated by MTS cytotoxicity assay and SEM examination. The results suggest that adding PVA into CS membrane could greatly improve CS membrane's flexibility and wettability. All the membranes prepared were biocompatible and have potential applications in GTR technology.  相似文献   

7.
13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level.  相似文献   

8.
Chitosan bicomponent nanofibers and nanoporous fibers   总被引:5,自引:0,他引:5  
Li L  Hsieh YL 《Carbohydrate research》2006,341(3):374-381
Nanofibers with average diameters between 20 and 100nm have been prepared by electrospinning of 82.5% deacetylated chitosan (Mv=1600 kDa) mixed with poly(vinyl alcohol) (PVA, Mw=124-186 kDa) in 2% (v/v) aqueous acetic acid. The formation of bicomponent fibers was feasible with 3% concentration of solution containing up to an equal mass of chitosan. Finer fibers, fewer beaded structures and more efficient fiber formation were observed with increasing PVA contents. Nanoporous fibers could be generated by removing the PVA component in the 17/83 chitosan/PVA bicomponent fibers with 1M NaOH (12 h). Fiber formation efficiency and composition uniformity improved significantly when the molecular weight of chitosan was halved by alkaline hydrolysis (50 wt% aqueous NaOH, 95 degrees C, 48 h). The improved uniform distribution of chitosan and PVA in the bicomponent fibers was attributed to better mixing mostly due to the reduced molecular weight and to the increased deacetylation of the chitosan.  相似文献   

9.
Blends of cross-linked poly(ethylene glycol) dimethacrylate (PEGDMA) and poly(d,l-lactide) (PLA) were prepared by mixing photoactive PEGDMA (molecular mass: 875 g/mol) and PLA, and subsequently photopolymerizing the mixture with visible light. The effects of PLA molecular mass and mass fraction on the rheological properties of the PEGDMA/PLA mixtures, and on the degree of methacrylate vinyl conversion (DC), as well as blend miscibility, microstructure, mechanical properties, in vitro swelling behavior, and cell responses were studied. PLA-2K (molecular mass: 2096 g/mol) and PLA-63K (molecular mass: 63 000 g/mol) formed miscible and partially miscible blends with cross-linked PEGDMA, respectively. The addition of the PLA-2K did not affect the immediate or post-cure (>24 h) DC of the PEGDMA upon photopolymerization. However, the addition of PLA-63K decreased the immediate DC of the PEGDMA, which can be increased through extending the curing time or post-curing period. Compared to the cross-linked neat PEGDMA and PLA-2K/PEGDMA blends, PLA-63K/PEGDMA blends were significantly stronger, stiffer, and tougher. Both types of blends and the cross-linked PEGDMA swelled when soaked in a phosphate buffered saline (PBS) solution. The attachment and spreading of MCT3-E1 cells increased with increasing PLA-63K content in the blends. The facile and rapid formation of PEGDMA/PLA blends by photopolymerization represents a simple and efficient approach to a class of biomaterials with a broad spectrum of properties.  相似文献   

10.
Thermosensitive hydrogels that are triggered by changes in environmental temperature thus resulting in in situ hydrogel formation have recently attracted the attention of many investigators for biomedical applications. In the current work, the thermosensitive hydrogel was prepared through the mixture of chitosan (CS), poly(vinyl alcohol) (PVA) and sodium bicarbonate. The mixture was liquid aqueous solutions at low temperature (about 4 °C), but a gel under physiological conditions. The hydrogel was characterized by FTIR, swelling and rheological analysis. The effect of hydrogel composition and temperature on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. In addition, the hydrogel interior morphology as well as porosity of structure was evaluated by scanning electron microscopy (SEM). The potential of the hydrogels as vehicles for delivering bovine serum albumin (BSA) were also examined. In this study, the physically crosslinked chitosan/PVA gel was prepared under mild conditions without organic solvent, high temperature or harsh pH. The viscoelastic properties, as investigated rheologically, indicate that the gel had good mechanical strength. The gel formed implants in situ in response to temperature change, from low temperature (about 4 °C) to body temperature, which was very suitable for local and sustained delivery of proteins, cell encapsulation and tissue engineering.  相似文献   

11.
The hydrolysis of sucrose was carried out over poly(vinyl alcohol) (PVA) with sulfonic acid groups, at 80 °C. The products of sucrose hydrolysis were glucose and fructose. A series of PVA with different crosslinking degree were prepared. It was observed that the catalytic activity of PVA matrix increases with the crosslinking degree, due to the increases of the amount of sulfonic acid groups on PVA.  相似文献   

12.
Y Li  F Chen  J Nie  D Yang 《Carbohydrate polymers》2012,90(4):1445-1451
The core-shell structure nanofibers of poly(lactic acid)/chitosan with different weight ratios were successfully electrospun from homogeneous solution. The preparation process was more simple and effective than double-needle electrospinning. The nanofibers were obtained with chitosan in shell while poly(lactic acid) in core attributing to phase separation, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The electrospun nanofibrous membrane was evaluated in vitro by using mouse fibroblasts (L929) as reference cell lines. Cell culture results indicated that these materials were good in promoting cell growth and attachment, thus they could be used for tissue engineering and wound healing dressing.  相似文献   

13.
The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.  相似文献   

14.
Chitosan/poly(vinyl alcohol)/gelatin (CS/PVA/GA) ternary blend films were prepared by solution blending method in this study. The thermal properties of the CS/PVA/GA ternary blend films were examined by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The melting point of the CS/PVA/GA ternary blend film was increased when the amount of GA in the blend film was increased based upon the DSC thermal analysis. Results of X-ray diffraction (XRD) analyses indicated that the intensity of diffraction peak at 19 degrees of PVA became lower and broader with increasing the amount of GA in the CS/PVA/GA ternary blend film. Although CS, PVA, and GA are hydrophilic biodegradable polymers, the results of water contact angle measurements are still as high as 83 degrees, 68 degrees, and 66 degrees, respectively. A minimum water contact angle (56 degrees) was observed when the ternary blend film contains 50 wt.% GA (i.e. GA5). This behavior is primarily due to the reorientation of polar functional groups toward to the top surface of CS/PVA/GA ternary blend films.  相似文献   

15.
Silk fibroin (SF)/poly(vinyl alcohol) (PVA) blend filaments were prepared by a wet spinning process. Regenerated SF and PVA were dissolved in formic acid and the dope solution exhibited good fiber formation in a methanol coagulation bath. Due to the miscibility of SF/PVA in formic acid, the filament had a smooth surface and dense structure with a circular cross-section. The crystalline structure and thermal properties were varied with different SF/PVA ratios. The mechanical properties of the filament were also controlled by blending PVA with SF. Especially, the knot strength of the SF filament, which is a very important suture property, could be significantly improved by blending with PVA.  相似文献   

16.
The morphology of wheat protein (WG) blends with polyvinyl alcohol (PVA) and respectively with thiolated polyvinyl alcohol (TPVA) was investigated by atomic force (AFM) and transmission electron microscopy (TEM) as well as by modulated dynamic scanning calorimetry (MDSC). Thiolated additives based on PVA and other substrates were previously presented as effective means of improving the strength and toughness of compression molded native WG bars via disulfide-sulfhydryl exchange reactions. Consistent with our earlier results, AFM and TEM imaging clearly indicate that the addition of just a few mole percent of thiol to PVA was sufficient to dramatically change its compatibility with wheat protein. Thus, TPVA is much more compatible with WG and phase separates into much smaller domains than in the case of PVA, although there are still two phases in the blend: one WG-rich phase and another TPVA-rich phase. The WG/TPVA blend has phase domains ranging in size from 0.01 to 0.1 microm, which are roughly 10 times smaller than those of the WG/PVA blend. MDSC further illustrates the compatibilization of the protein with TPVA via the dependence of the transition temperatures on composition.  相似文献   

17.
The aim of this work was to develop biodegradable films based on blends of Amaranthus cruentus flour and poly(vinyl alcohol). Five different PVA types were tested. Blends with higher hydrolysis (HD) degree PVA were more resistant, showing greater tensile strength (TS) and puncture force (PF). However, the films with PVA with lower HD showed more flexibility, greater elongation at break (ELO) and greater puncture deformation (PD), with the exception of PVA 325. The latter was chosen due to it superior mechanical performance (TS = 10.2 MPa, ELO = 89.8%, PF = 9.4 N and PD = 16.3%). When films based on blends of amaranth flour and PVA 325 (10–50%) were evaluated, all mechanical properties were enhanced with increase in PVA 325 content. The solubility in water of the films made with PVA and amaranth flour decreased with increasing PVA content, reaching 44% of soluble matter for the 50% PVA film. The formation of hydrogen bonds between the blend components was confirmed by the FTIR spectra analysis.  相似文献   

18.
We report on the preparation and characterization of core-shell structure of bovine serum albumin (BSA) blended poly(vinyl alcohol) (PVA) composite nanofibers by using electrospinning process. The core-shell structure nanofibers have been electrospun from the homogeneous solution of BSA (as shell) and PVA (as core). The morphology, chemical compositions, structure and thermal properties of the resultant products were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDX), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) techniques. The blending ratio of PVA and BSA, molecular weight of BSA and the applied voltage of electrospinning process were observed to be the key influence factors on the formation of core-shell nanofibers structure. Based on the experimental findings, we proposed a possible physical mechanism for the formation of core-shell nanofibers structure of PVA blended BSA composite.  相似文献   

19.
The miscibility and mechanical properties of poly vinyl alcohol (PVA) and poly acrylic acid (PAA)-composited membranes were studied with molecular simulation. The Flory–Huggins parameters (δ) were calculated to prove the good miscibility of PVA and PAA. The radial distribution functions of hydroxyl and carboxyl atoms and the average number of H-bonds were observed to indicate the degree of physical cross-linking between PVA and PAA. The influences of intermolecular physical cross-linking on the glass transition temperature and mechanical properties were estimated. The results revealed that the PVA/PAA membrane with a composition of 2:3 has the best plastic properties, which exhibits a good application value. All of the simulated results showed good agreement with the experimental data. It indicates that the method presented in this work has a promising application prospect.  相似文献   

20.
Interpenetrating polymer networks (IPN), as polymer hydrogels composed of poly(vinyl alcohol) (PVA) and hyaluronic acid (HA), which exhibited electrical sensitive behavior were prepared. The swelling behavior of the IPN/HA IPN was studied by immersing the gel in various concentrations of aqueous NaCl solutions and various pH buffer solutions. The response of the PVA/HA IPN to electric fields stimuli was also investigated. When swollen IPN was placed between a pair of electrodes, and an electric field applied, it exhibited bending behavior. The PVA/HA IPN also displayed stepwise bending behavior, depending on the magnitude of the electric stimulus. Also, for use in biosensors application, their bending behavior was studied in Hank's solution at pH 7.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号