首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用含有稳定同位素15N-硫酸铵为主要氮源的专用发酵培养基配方和提取精制条件,在国内、外首次采用基因工程菌AA7(pTH2)(AHVrAECr,Thr-N-,Homr,Apr)直接发酵方法研制L-苏氨酸-N15高丰度精制产品。每mol15N-硫酸铵实际得到0.638molL-苏氨酸-N15,产品N15丰度达99.09%,仅比原料15N-硫酸铵丰度下降0.42%,提取精制得率高达92.83%。  相似文献   

2.
黑曲霉生产β—葡萄糖苷酶发酵条件的研究   总被引:9,自引:0,他引:9  
经多项式回归分析,研究了不同浓度N源、C源、无机盐等对酶产量的影响,确定出最佳培养基配方为:麸皮4.9%,(NH4)2SO40.4%,KH2PO40.29%,CaCl20.05%,MgSO4·7H2O0.04%,FeSO4·75mg·L^-ZnCl21.4mg·L^-,0.2%油酸钠。并对培养温度1时间、培养基初妈pH、通气量、接种量、接种方式等培养条件进行优化,使黑曲霉生产β-葡萄糖苷酶的产量由  相似文献   

3.
应用基因工程的方法,将含有巨细胞病毒(CMV)启动子的基因片段和人粒细胞-巨噬细胞集落刺激因子(hGM-CSF)的cDNA,克隆进逆转录病毒载体N2A,得到重组质粒N2A/CMV/hGM-CSF.经脂质体包装并转染包装细胞,通过G418药物筛选,得到抗性克隆。经PCR和Southemblot检测证实,GM-CSF基因已整合到该克隆细胞的染色体上,获得的逆转录病毒滴度达10 ̄4CFU/ml,克隆细胞培养上清用TF-1细胞可检测到GM-CSF活性。  相似文献   

4.
建立了一种亲和层析纯化肌质网Ca ̄(2+)-ATP酶的方法.用非离子型去污剂C_(12)E_8溶解肌质网,再通过反应红-120琼脂糖亲和层析柱使肌质网Ca ̄(2+)-ATP酶纯度从粗品中的65%提高到99%,并具有较高ATP水解活性.经SDS-聚丙烯酰胺凝胶电泳检测,为电泳纯.  相似文献   

5.
研究了大豆液泡膜H+-ATPase泵质子特性。液泡膜H+-ATPase泵质子活性受NEM、NBD-Cl、DCCD和NO3-的抑制。泵质子活性由二价阳离子启动,其有效性依次为Fe2+>Mg2+>Mn2+,它以ATP为最适底物,ADP为竞争性抑制剂;最适pH为7.0,最适温度为50°C。  相似文献   

6.
NA和5-HT对小脑脑片浦肯野细胞自发及诱发电活动的影响   总被引:2,自引:0,他引:2  
在大鼠小脑脑片上观察了NA和5-HT对浦肯野细胞(PC)的自发放电活动及由白质刺激所引起的诱发放电活动的影响。结果表明:(1)NA使PC产生抑制、兴奋和双相反应,以抑制反应为主(79.8%);5-HT引起PC兴奋和抑制反应,以兴奋反应略多(57.8%)。(2)先后灌流NA和5-HT对同一个PC自发放电的影响主要为抑制(NA)-兴奋(5-HT)(53.8%)。(3)NA对PC的诱发复杂锋电位(CS)和简单锋电位(SS)反应,主要产生增强效应(57.1%和62.8%);5-HT对PC诱发CS和SS反应则主要产生压抑作用(60.0%和68.2%)。(4)先后灌流NA和5-HT对同一个PC的诱发CS和SS反应,主要表现为NA对这两种诱发反应的增强和5-HT的压抑效应(60.0%和52.9%)。这些结果提示,NA能和5-HT能传入纤维可以通过释放NA和5-HT调节PC的兴奋性水平并改变PC对爬行纤维和苦状纤维突触传入的反应敏感性,影响小脑皮层神经元网络的感觉运动整合过程。  相似文献   

7.
本文研究了柯萨基B3病毒(CoxsackievirusB3)对正常人PBMC白细胞介素一2受体(mIL一2R)表达的影响,结果实验组为89.83±7.03%,对照组为52.5±6.13%,表明CoxsackievirusB3能作用于PBMC,使其mIL一2R表达明显减少(P<0.01),由此影响IL-2发挥正常的生物学功能,如促使T细胞增殖,NK细胞活化等,本文认为mIL-2表达减少可能是CoxsackievirusB组病毒所致心肌炎患者细胞免疫功能异常的原因之一。  相似文献   

8.
深红酵母转化反式肉桂酸生成L-苯丙氨酸的研究   总被引:4,自引:0,他引:4  
研究了深红酵母As2.279产生L-苯丙氨酸解氨酸(PAL)的条件、转化反式 桂酸(tCa)生成L-苯丙氨酸(L-Phe)的条件以及几种因素对PAL稳定性的影响,结果表明,最佳转化条件为:1.0%t-Ca,8mol/L氨,pH10.0,30℃。在转化液中加入还原剂和充入N2有利于提高酶的稳定性,在此条件下可一次转化64%的t-Ca,保留60%的酶活。生成L-Phe浓度为5.8g/L。  相似文献   

9.
眼镜王蛇抽提物CM-11为含72个残基的长链神经毒素,对其进行了DQF-COSY,TOCSY和NOESY等一系列2D-NMR谱测定,借助序列专一归属法完成了CM-11NMR氢谱的完整归属。  相似文献   

10.
用人工合成的丁型肝炎病毒抗原(HDV-Ag)肽建立了检测抗HDV-IgM抗体的ELISA方法,本法操作简便、快速,重复性好,特异性强,与抗HAV-IgM、抗Hk-IgM、抗HBs-IgM、抗HCV-IgI、抗CMV-IgM、抗RV-IgM、类风湿因子(RF)及抗核抗体(ANA)阳性血清均不起反应,且可被2-巯基乙醇阻断而不起反应。经初步临床应用,31例正常人血清抗HDV-IgM全部阴性,28例慢活肝患者检出率为32.1%(9/28),17例慢迁肝患者血清阳性率为11.8%(2/17)18例肝癌和肝硬化病人血清阳性率为22.2%(4/18)这三组病人与正常对照者相比较均有显著性差异(P<0.001)。此外,抗HDV-IgM阳性血清的ALT值均明显高于正常参考范围,提示在HDV感染过程中,患者肝细胞进一步受损。实验结果证明,抗HDV-IgM是诊断HDV感染的重要指标,对HDV感染早期诊断具有重要价值。  相似文献   

11.
The antioxidant potential of N-acetylcysteine amide (NACA), also known as AD4, was assessed by employing different in vitro assays. These included reducing power, free radical scavenging capacities, peroxidation inhibiting activity through linoleic acid emulsion system and metal chelating capacity, as compared to NAC and three widely used antioxidants, alpha-tocopherol, ascorbic acid and butylated hydroxytoluene (BHT). Of the antioxidant properties that were investigated, NACA was shown to possess higher 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability and reducing power than NAC, at all the concentrations, whereas the scavenging ability of H(2)O(2) differed with concentration. While NACA had greater H(2)O(2) scavenging capacity at the highest concentration, NAC was better than NACA at lower concentrations. NAC and NACA had a 60% and 55% higher ability to prevent beta-carotene bleaching, respectively, as compared to control. The chelating activity of NACA was more than 50% that of the metal chelating capacity of EDTA and four and nine times that of BHT and alpha-tocopherol, respectively. When compared to NACA and NAC; alpha-tocopherol had higher DPPH scavenging abilities and BHT and alpha-tocopherol had better beta-carotene bleaching power. These findings provide evidence that the novel antioxidant, NACA, has indeed enhanced the antioxidant properties of NAC.  相似文献   

12.
N-acetyl-cysteine (NAC), when given orally, has been shown to prevent gastric damage induced by ethanol, but when administered intraperitoneally, it appears to potentiate such damage. In an effort to resolve these seemingly discordant findings, fasted rats (six per group) received 1 ml of saline or 20% NAC orally or intraperitoneally (ip). Two hours or 15 min later, they received 1 ml of 100% ethanol orally. At sacrifice 5 min later, rats receiving oral pretreatment with 20% NAC at both 15 and 120 min prior to ethanol exposure demonstrated a significant reduction in the magnitude of gastric injury when compared with saline controls. In contrast, actual promotion of ethanol damage was noted when NAC was given intraperitoneally, but was more pronounced when NAC was administered 15 min prior to exposing the mucosa to 100% ethanol. In all animals receiving intraperitoneal NAC, large amounts of peritoneal fluid (4-6 ml/rat) were recovered at the time of sacrifice, most of which occurred within 15 min of NAC administration; these more pronounced peritoneal effects at 15 min after NAC correlated with the more severe injury from ethanol at this time period compared to 120 min after intraperitoneal NAC. Saline controls had no peritoneal fluid. Mucosal glutathione (GSH) levels generally paralleled these results in that a significant decrease in tissue GSH occurred at 15 min following intraperitoneal NAC when compared with controls; at 120 min after intraperitoneal NAC, GSH levels were similar to control values. Additional experiments demonstrated that within 15 min following NAC administration, systemic blood pressure dropped by approximately 20% and basically remained unchanged over the next 2 hr; intraperitoneal saline had no sustained adverse effects on blood pressure. It was concluded that the inability of NAC to prevent ethanol injury when given intraperitoneally in contrast to orally is related to the drop in blood pressure secondary to NAC's peritoneal irritant effects, which presumably altered gastric mucosal blood flow, thus obivating its ability to prevent ethanol damage under these conditions. Furthermore, the decreased levels in mucosal GSH following the hypotension induced by intraperitoneal NAC suggest that perturbations in GSH metabolism may also have contributed to the decreased resistance to ethanol injury.  相似文献   

13.
N-Acetylcysteine is a thiol antioxidant with expanding clinical importance. A sensitive, rapid method for determining reduced N-acetylcysteine (NAC) concentration in biological samples has been developed which uses a modified reversed-phase high-performance liquid chromatography (HPLC) technique in conjunction with the derivatizing agent N-(1-pyrenyl)maleimide (NPM). The NAC-NPM adduct was analyzed by HPLC with fluorescence detection. The calibration curve for NAC was linear over the range 8–2500 nM and the coefficient of variation obtained for the within-run precision and the between-run precision for 0.5 mM NAC was 1.5% and 2.7%, respectively. Relative recovery of NAC from biological materials ranged between 86% and 96% and the limit of quantitation from biological samples was 32 nM. These results suggest practical advantages relative to other widely-accepted methods of NAC measurement.  相似文献   

14.
Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). We have evaluated the role of oxidative and nitrosative stress, as the causal factors in the development of EAE, responsible for the damage of cardinal cellular components, such as lipids, proteins and nucleic acids, resulting in demyelination, axonal damage, and neuronal death. EAE was induced in female Sprague-Dawley rats, 3 months old (300±20 g), by immunization with myelin basic protein in combination with Complete Freund's adjuvant (CFA). The animals were divided into seven groups: control, EAE, CFA, EAE+aminoguanidine (AG), AG, EAE+N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the levels of nitrosative and oxidative stress were determined in 10% homogenate of the whole encephalitic mass. In EAE rats, brain NO production and MDA level were significantly increased (P<0.001) compared to the control values, whereas AG and NAC treatment decreased both parameters in EAE rats compared to EAE group (P<0.001). Glutathione (GSH) was reduced (P<0.001) in EAE rats in comparison with the control and CFA groups, but increased in EAE+AG and EAE+NAC group compared to the EAE group (P<0.01). Superoxide dismutase (SOD) activity was significantly decreased (P<0.001) in the EAE group compared to all other experimental groups. The clinical expression of EAE was significantly decreased (P<0.05) in the EAE groups treated with AG and NAC compared to EAE rats, during disease development. The obtained results prove an important role of oxidative and nitrosative stress in the pathogenesis of EAE, whereas AG and NAC protective effects offer new possibilities for a modified combined approach in MS therapy.  相似文献   

15.
The success of endodontic treatment depends on the eradication of microorganisms from the root canal system and the prevention of reinfection. The purpose of this investigation was to evaluate the antibacterial and antibiofilm efficacy of N-acetylcysteine (NAC), an antioxidant mucolytic agent, as an intracanal medicament against selected endodontic pathogens. Minimum inhibitory concentrations (MICs) of NAC for Actinomyces naeslundii, Lactobacillus salivarius, Streptococcus mutans, and Enterococcus faecalis were determined using the broth microdilution method. NAC showed antibacterial activity, with MIC values of 0.78–1.56 mg/ml. The effect of NAC on biofilm formation of each bacterium and a multispecies culture consisting of the four bacterial species was assessed by crystal violet staining. NAC significantly inhibited biofilm formation by all the monospecies and multispecies bacteria at minimum concentrations of 0.78–3.13 mg/ml. The efficacy of NAC for biofilm disruption was evaluated by scanning electron microscopy and ATP-bioluminescence quantification using mature multispecies biofilms. Preformed mature multispecies biofilms on saliva-coated hydroxyapatite disks were disrupted within 10 min by treatment with NAC at concentrations of 25 mg/ml or higher. After 24 h of treatment, the viability of mature biofilms was reduced by > 99% compared with the control. Moreover, the biofilm disrupting activity of NAC was significantly higher than that of saturated calcium hydroxide or 2% chlorhexidine solution. Within the limitations of this in vitro study, we conclude that NAC has excellent antibacterial and antibiofilm efficacy against endodontic pathogens and may be used as an alternative intracanal medicament in root canal therapies.  相似文献   

16.
Human peripheral blood mononuclear cells (PBM) lost the capacity to generate immunoglobulin-secreting cells (ISC) in response to pokeweed mitogen (PWM) when depleted of adherent cells (AC). The diminished responsiveness of the nonadherent cells (NAC) could not be ascribed to cell death, altered PWM dose response characteristics, or a change in the length of incubation required to generate a response. Supplementation with autologous or homologous AC, but not 2-mercaptoethanol, restored the capacity of NAC to generate ISC after PWM stimulation. By standard criteria AC were found to contain 85 to 90% monocytes. Furthermore, the monocytes and not the few lymphocytes contaminating the AC were responsible for restoring PWM responsiveness to the NAC. PWM-induced DNA synthesis of NAC also was markedly reduced compared to PBM. Again, supplementation with monocytes restored responsiveness to NAC. The monocyte dependence of PWM-induced proliferation and generation of ISC was most apparent when cultural conditions were employed that limited cell-to-cell interaction.  相似文献   

17.
Effects of Root Zone Restriction on Amino Acid Status and Bean Plant Growth   总被引:1,自引:0,他引:1  
The possibility that the suppression of shoot growth in restrictedroot zone plants (RRZP) is caused by a deficiency in N-aminocompounds (NAC) in the shoot, possibly due to an insufficientsupply from the roots, was studied in bean (Phaseolus vulgarisL.). Root zone restriction to 10 cm3 in an aerated nutrientsolution resulted in suppressed plant growth, as compared withcontrol plants grown in a non-limiting root zone volume. Rootxylem exudation of solution and N-amino compunds (NAC) followingdecapitation was much greater in the control, as compared withRRZP, both per plant and per unit root fresh weight (FWT). Inboth treatments, asparagine comprised more than 52% of the NACfraction in the root xylem exudate (RE). Its reduced exudationin the RRZP was of a proportion similar to the combined fractionof NAC left over in both treatments. Asparagine accumulationin leaves of the control plants was very high, comprising 73%of the total NAC pool, while in RRZP, it was much smaller anddid not exceed 25%. The total NAC amount per unit of leaf FWTwas 3·3 times smaller for the RRZP, as compared withthe control, resulting mainly from the dramatic drop in asparagineaccumulation. In the roots, RRZP accumulated more NAC per unitroot FWT than the control. Raising both treatments in distilledwater reduced considerably the accumulation of NAC, includingasparagine, in their leaves. RRZP was relatively more suppressedby the absence of nutrients than control plants. This phenomenondid occur, despite the fact that NAC and asparagine concentrationsin the root and shoot of RRZP were greater than in the controlwhen grown in distilled water; Therefore, it was concluded thatroot zone restriction might affect the accumulation of NAC andasparagine in the leaves, but that deficiency in these compoundsis not the primary or the major cause of growth suppressionin RRZP. Key words: Root zone restriction, asparagine, amino-acids, Phaseolus vulgaris  相似文献   

18.
N‐Acetyl‐L‐cysteine (NAC) can inhibit the luminol–H2O2, reaction, which is catalyzed by silver nanoparticles. Based on this phenomenon a new method was developed for NAC determination. Under optimum conditions, a linear relationship between chemiluminescence intensity and NAC concentration was found in the range 0.034–0.98 µg/mL. The detection limit was 0.010 µg/mL (S/N =3), and the relative standard deviation (RSD) was <5% for 0.480 µg/mL NAC (n =5). This simple, sensitive and inexpensive method has been applied to measure the concentration of NAC in pharmaceutical tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.

Background

Neoadjuvant chemotherapy (NAC) is a standard care regimen for patients with breast cancer. However, the pathologic complete response (pCR) rate remains at 30%. We hypothesized that a cancer stem cell marker may identify NAC-resistant patients, and evaluated CD133 and ALDH1 as a potential surrogate marker for breast cancer. The aim of this study was to find a surrogate maker to predict chemosensitivity of NAC for breast cancer.

Methodology/Findings

A total of 102 patients with breast cancer were treated with NAC consisting of epirubicin followed by paclitaxel. Core needle biopsy (CNB) specimens and resected tumors were obtained from all patients before and after NAC, respectively. Chemosensitivity and prognostic potential of CD133 or ALDH1 expression was evaluated by immunohistochemistry. Clinical CR (cCR) and pCR rates were 18% (18/102) and 29% (30/102), respectively. Forty-seven (46%) patients had CD133-positive tumors before NAC, and CD133 expression was significantly associated with a low pCR rate (p = 0.035) and clinical non-responders. Multivariate analysis revealed that CD133 expression was significantly (p = 0.03) related to pCR. Recurrence was more frequent in patients with CD133-positive tumors (21/47, 45%) than that in patients with CD133-negative tumors (7/55, 13%). The number of patients with CD133-positive tumors (62%) after NAC was higher than that (46%) before NAC. Furthermore, most patients with CD133-positive tumors before NAC maintained the same status after NAC.

Conclusion/Significance

CD133 before NAC might be a useful marker for predicting the effectiveness of NAC and recurrence of breast cancer after NAC.  相似文献   

20.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated the effects of the antioxidant compound N-acetylcysteine (NAC) on muscle cysteine, cystine, and glutathione and on time to fatigue during prolonged, submaximal exercise in endurance athletes. Eight men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling for 45 min at 71% peak oxygen consumption (VO2 peak) and then to fatigue at 92% VO2 peak. NAC was intravenously infused at 125 mg.kg(-1).h(-1) for 15 min and then at 25 mg.kg(-1).h(-1) for 20 min before and throughout exercise. Arterialized venous blood was analyzed for NAC, glutathione status, and cysteine concentration. A vastus lateralis biopsy was taken preinfusion, at 45 min of exercise, and at fatigue and was analyzed for NAC, total glutathione (TGSH), reduced glutathione (GSH), cysteine, and cystine. Time to fatigue at 92% VO2 peak was reproducible in preliminary trials (coefficient of variation 5.6 +/- 0.6%) and with NAC was enhanced by 26.3 +/- 9.1% (NAC 6.4 +/- 0.6 min vs. Con 5.3 +/- 0.7 min; P <0.05). NAC increased muscle total and reduced NAC at both 45 min and fatigue (P <0.005). Muscle cysteine and cystine were unchanged during Con, but were elevated above preinfusion levels with NAC (P <0.001). Muscle TGSH (P <0.05) declined and muscle GSH tended to decline (P=0.06) during exercise. Both were greater with NAC (P <0.05). Neither exercise nor NAC affected whole blood TGSH. Whereas blood GSH was decreased and calculated oxidized glutathione increased with exercise (P <0.05), both were unaffected by NAC. In conclusion, NAC improved performance in well-trained individuals, with enhanced muscle cysteine and GSH availability a likely mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号