首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The side‐chain architecture of alternating copolymers based on thiophene and quinoxaline (TQ) is found to strongly influence the solubility and photovoltaic performance. In particular, TQ polymers with different linear or branched alkyloxy‐phenyl side chains on the quinoxaline unit are compared. Attaching the linear alkyloxy side‐chain segment at the meta‐ instead of the para‐position of the phenyl ring reduces the planarity of the backbone as well as the ability to order. However, the delocalisation across the backbone is not affected, which permits the design of high‐performance TQ polymers that do not aggregate in solution. The use of branched meta‐(2‐ethylhexyl)oxy‐phenyl side‐chains results in a TQ polymer with an intermediate degree of order. The reduced tendency for aggregation of TQ polymers with linear meta‐alkyloxy‐phenyl persists in the solid state. As a result, it is possible to avoid the decrease in charge‐transfer state energy that is observed for bulk‐heterojunction blends of more ordered TQ polymers and fullerenes. The associated gain in open‐circuit voltage of disordered TQ:fullerene solar cells, accompanied by a higher short‐circuit current density, leads to a higher power conversion efficiency overall. Thus, in contrast to other donor polymers, for TQ polymers there is no need to compromise between solubility and photovoltaic performance.  相似文献   

2.
Morphology and miscibility control are still a great challenge in polymer solar cells. Despite physical tools being applied, chemical strategies are still limited and complex. To finely tune blend miscibility to obtain optimized morphology, chemical steric engineering is proposed to systemically investigate its effects on optical and electronic properties, especially on a balance between crystallinity and miscibility. By changing the alkylthiol side chain orientation different steric effects are realized in three different polymers. Surprisingly, the photovoltaic device of the polymer PTBB‐m with middle steric structure affords a better power conversion efficiency, over 12%, compared to those of the polymers PTBB‐o and PTBB‐p with large or small steric structures, which could be attributed to a more balanced blend miscibility without sacrificing charge‐carrier transport. Space charge‐limited current, atomic force microscopy, grazing incidence wide angle X‐ray scattering, and resonant soft X‐ray scattering measurements show that the steric engineering of alkylthiol side chains can have significant impacts on polymer aggregation properties, blend miscibility, and photovoltaic performances. More important, the control of miscibility via the simple chemical approach has preliminarily proved its great potential and will pave a new avenue for optimizing the blend morphology.  相似文献   

3.
The device performance of polymer solar cells (PSCs) is strongly dependent on the blend morphology. One of the strategies for improving PSC performance is side‐chain engineering, which plays an important role in controlling the aggregation properties of the polymers and thus the domain crystallinity/purity of the donor–acceptor blends. In particular, for a family of high‐performance donor polymers with strong temperature‐dependent aggregation properties, the device performances are very sensitive to the size of alkyl chains, and the best device performance can only be achieved with an optimized odd‐numbered alkyl chain. However, the synthetic route of odd‐numbered alkyl chains is costly and complicated, which makes it difficult for large‐scale synthesis. Here, this study presents a facile method to optimize the aggregation properties and blend morphology by employing donor polymers with a mixture of two even‐numbered, randomly distributed alkyl chains. In a model polymer system, this study suggests that the structural and electronic properties of the random polymers comprising a mixture of 2‐octyldodecyl and 2‐decyltetradecyl alkyl chains can be systematically tuned by varying the mixing ratio, and a high power conversion efficiency (11.1%) can be achieved. This approach promotes the scalability of donor polymers and thus facilitates the commercialization of PSCs.  相似文献   

4.
Three vacuum‐deposited donor–acceptor–acceptor (d–a–a') small molecule donors are studied with different side chains attached to an asymmetric heterotetracene donor block for use in high efficiency organic photovoltaics (OPVs). The donor with an isobutyl side chain yields the highest crystal packing density compared to molecules with 2‐ethylhexyl or n‐butyl chains, leading to the largest absorption coefficient and short circuit current in an OPV. It also exhibits a higher fill factor, consistent with its preferred out‐of‐plane molecular π–π stacking arrangement that facilitates charge transport in the direction perpendicular to the substrate. A power conversion efficiency of 9.3 ± 0.5% is achieved under 1 sun intensity, AM 1.5 G simulated solar illumination, which is significantly higher than 7.5 ± 0.4% of the other two molecules. These results indicate that side chain modification of d–a–a' small molecules offers an effective approach to control the crystal packing configuration, thereby improving the device performance.  相似文献   

5.
Morphology control is one of the key strategies in optimizing the performance of organic photovoltaic materials, particularly for diketopyrrolopyrrole (DPP)‐based donor polymers. The design of DPP‐based polymers that provide high power conversion efficiency (PCE) presents a significant challenge that requires optimization of both energetics and morphology. Herein, a series of high performance, small band gap DPP‐based terpolymers are designed via two‐step side chain engineering, namely introducing alternating short and long alkyls for reducing the domain spacing and inserting alkylthio for modulating the energy levels. The new DPP‐based terpolymers are compared to delineate how the side chain impacts the mesoscale morphology. By employing the alkylthio‐substituted terpolymer PBDPP‐TS, the new polymer solar cell (PSC) device realizes a good balance of a high V oc of 0.77 V and a high J sc over 15 mA cm?2, and thus realizes desirable PCE in excess of 8% and 9.5% in single junction and tandem PSC devices, respectively. The study indicates better control of domain purity will greatly improve performance of single junction DPP‐based PSCs toward 10% efficiency. More significantly, the utility of this stepwise side chain engineering can be readily expanded to other classes of well‐defined copolymers and triggers efficiency breakthroughs in novel terpolymers for photovoltaic and related electronic applications.  相似文献   

6.
Considering that a high compatibility at hybrid organic/inorganic interfaces can be achieved using polar and hydrophilic functionalities, this approach is used to improve inverted polymer solar cell performance by introducing nonionic phosphonate side chains (at 0%, 5%, 15%, and 30% substitution levels) into a series of isoindigo‐based polymers (PIIGDT‐Pn). This approach led to ≈20% improvement in power conversion efficiency compared to a nonmodified control polymer, via an increased short‐circuit current (J SC). This enhancement is believed to stem from reduced nongerminate recombination and improved charge carried extraction when the level of phosphonate substitution is optimized. These results are substantiated by a combination of detailed electrical measurements including space‐charged limited current modeling, light intensity–dependent photocurrent (J ph) analysis, and morphological studies (grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy). This is the first practical report demonstrating the use of nonionic polar side chains to control charge carrier dynamics in an existing photovoltaic polymer structure. It is envisioned that this simple strategy may be applied to other material systems and yield new materials with the potential for even higher performance.  相似文献   

7.
We compare the opto‐electronic and photovoltaic properties of two diketopyrrolopyrrole (DPP) based semiconducting polymers in which the DPP unit alternates along the chain with a conjugated bis(dithienyl)phenylene (4TP) unit. The two polymers differ only in the solubilizing substituents on the thiophene rings which are either alkyl (PDPP4TP) or alkoxy (PDPP4TOP) groups. We show that alkoxy groups lower the optical band gap and increase the ionization potential compared to the alkyl groups. As a result, PDDP4TOP provides a significantly higher charge generation efficiency and concomitant higher short‐circuit current, 18.0 mA cm?2 vs. 12.4 mA cm?2, compared to PDPP4TP in optimized devices with [6,6]phenyl‐C71‐butyric acid methyl ester ([70]PCBM) as acceptor, but a simultaneous decrease in open circuit voltage, 0.51 vs. 0.67 V. The increased current arises from a higher external quantum efficiency and a wider spectral coverage. The net result is a small increase in power conversion efficiency from 5.8% for PDPP4TP to 6.0% for the PDPP4TOP in optimized devices. The optimized processing conditions and bulk heterojunction morphology are virtually identical for both photoactive layers. The study demonstrates that the side chains enable effective method for rationally designing new photoactive semiconducting polymers.  相似文献   

8.
A series of four polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and 5,6‐difluoro‐4,7‐diiodobenzo[c][1,2,5]thiadiazole (2FBT), PBDT2FBT, PBDT2FBT‐O, PBDT2FBT‐T, and PBDT2FBT‐T‐O, are synthesized with their four different side chains, alkyl‐, alkoxy‐, alkylthienyl‐, and alkoxythienyl. Experimental results and theoretical calculations show that the molecular tuning of the side chains simultaneously influences the solubilities, energy levels, light absorption, surface tension, and intermolecular packing of the resulting polymers by altering their molecular coplanarity and electron affinity. The polymer solar cell (PSC) based on a blend of PBDT2FBT‐T/[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits the best photovoltaic performance of the four PBDT2FBT derivatives, with a high open‐circuit voltage of 0.98 V and a power conversion efficiency of 6.37%, without any processing additives, post‐treatments, or optical spacers. Furthermore, PBDT2FBT‐T‐O, which has a novel side chain alkoxythienyl, showed promising properties with the most red‐shifted absorption and strong intermolecular packing property in solid state. This study provides insight into molecular design and fabrication strategies via structural tuning of the side chains of conjugated polymers for achieving highly efficient PSCs.  相似文献   

9.
Newly developed benzo[1,2‐b:4,5‐b′]dithiophene (BDT) block with 3,4‐ethylenedioxythiophene (EDOT) side chains is first employed to build efficient photovoltaic copolymers. The resulting copolymers, PBDTEDOT‐BT and PBDTEDOTFBT, have a large bandgap more than 1.80 eV, which is attributed to the increased steric hindrance between the BDT and EDOT skeletons. Both copolymers possess the satisfied absorptions, low‐lying highest occupied molecular orbital (HOMO) levels and high crystallinity. Using the fluorination strategy, PBDTEDOT‐FBT exhibits a wider and stronger absorption and a deeper HOMO level than those of PBDTEDOT‐BT. PBDTEDOT‐FBT:[6,6]‐Phenyl C71 butyric acid methyl ester (PC71BM) blend also shows the higher hole mobility and better surface morphology compared with the PBDTEDOTBT:PC71BM blend. Combination of above advantages, PBDTEDOT‐FBT devices exhibit much higher power conversion efficiency (PCE) of 10.11%, with an improved open circuit voltage (Voc) of 0.86 V, short circuit current densities (Jsc) of 16.01 mA cm?2, and fill factor (FF) of 72.6%. This work not only provides a newly efficient candidate of BDT donor block modified with EDOT conjugated side chains, but also achieves high‐performance large bandgap copolymers for polymer solar cells (PSCs) via the synergistic effect of fluorination and side chain engineering strategies.  相似文献   

10.
The emerging field of tandem polymer solar cells (TPSCs) enables a feasible approach to deal with the fundamental losses associated with single‐junction polymer solar cells (PSCs) and provides the opportunity to propel their overall performance. Additionally, the rational selection of appropriate subcell photoactive polymers with complementary absorption profiles and optimal thicknesses to achieve balanced photocurrent generation are very important issues which must be addressed in order to realize paramount device performance. Here, two side chain fluorinated wide‐bandgap π‐conjugated polymers P1 (2F) and P2 (4F) in TPSCs have been used. These π‐conjugated polymers have high absorption coefficients and deep highest occupied molecular orbitals which lead to high open‐circuit voltages (Voc) of 0.91 and 1.00 V, respectively. Using these π‐conjugated polymers, TPSCs have been successfully fabricated by combining P1 or P2 as front cells with PTB7‐Th as back cells. The optimized TPSCs deliver outstanding power conversion efficiencies of 11.42 and 10.05%, with high Voc's of 1.64 and 1.72 V, respectively. These results are analyzed by balance of charge mobilities, and optical and electrical modeling is combined to demonstrate simultaneous improvement in all photovoltaic parameters in TPSCs.  相似文献   

11.
The efficiency of polymer – metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester‐functionalized side chain poly(3‐hexylthiophene‐2,5‐diyl) derivative (P3HT‐E), the nanoscale morphology of ZnO:polymer solar cells is significantly more intimately mixed compared to ZnO:poly(3‐hexylthiophene‐2,5‐diyl) (ZnO:P3HT), as evidenced experimentally from a 3D reconstruction of the phase separation using electron tomography. Photoinduced absorption reveals nearly quantitative charge generation for the ZnO:P3HT‐E blend but not for ZnO:P3HT, consistent with the results obtained from solving the 3D diffusion equation for excitons formed in the polymer within the two experimental ZnO morphologies. For thin ZnO:P3HT‐E active layers (~50 nm) this yields a significant improvement of the solar cell performance. For thicker cells, however, the reduced hole mobility and a reduced percolation of ZnO pathways hinders charge carrier collection, limiting the power conversion efficiency.  相似文献   

12.
A nonfullerene acceptor (NFA) with acceptor–donor–acceptor (A–D–A) architecture, i‐IEICO‐2F, based on 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene as an electron‐donating core and 2‐(6‐fluoro‐2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)‐propanedinitrile as electron‐withdrawing end groups, is designed and synthesized. i‐IEICO‐2F has a twist structure in the main conjugated chain, which causes blueshifted absorption and leads to harmonious absorption with a high bandgap donor. The bandgap of i‐IEICO‐2F compliments the bandgap of suitable wide bandgap donor polymers such as J52, leading to complete light absorption throughout the visible spectrum. Devices based on i‐IEICO‐2F exhibit optimized photovoltaic performance including an open‐circuit voltage of 0.93 V, a short‐circuit current density of 16.61 mA cm?2, and a fill factor of 73%, and result in a power conversion efficiency (PCE) of 11.28%. The i‐IEICO‐2F‐based devices reach PCEs of >11% without using any additives or post‐treatments. Devices are found to be thermally stable and maintain 44% of their initial PCE after 184.5 h of continuous thermal annealing (TA) treatment at 150 °C. Based on UV, atomic force microscopy (AFM), and grazing incidence wide angle X‐ray scattering (GIWAXS) results, i‐IEICO‐2F devices show almost identical morphology and molecular orientation throughout the TA treatment and excellent stability compared to other IEICO derivatives.  相似文献   

13.
In this work, a new asymmetrical backbone thienobenzodithiophene (TBD) containing four aromatic rings is designed, and then four polymers PTBD‐BZ, PTBD‐BDD, PTBD‐FBT, and PTBD‐Tz are synthesized. The planar and high degree of π‐conjugation configuration can guarantee effective charge carrier transport and the distinct flanked dihedral angles between the TBD core and conjugated side chain can subtly regulate the molecular aggregation and crystallinity. The four polymer/3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐dithiophene (ITIC) blending films exhibit predominantly face‐on orientation. The photovoltaic devices based on wide bandgap polymers PTBD‐BZ and PTBD‐BDD achieve power conversion efficiencies (PCEs) as high as 12.02% and 11.39% without any post‐treatment. For the medium bandgap polymers PTBD‐FBT and PTBD‐Tz, the devices also show good PCEs of 10.18% and 11.02% with high VOC of 0.94 and 1.02 V, respectively, which indicates simultaneously achieving a VOC > 1 V and a high JSC is feasible to further improve the PSCs' performance by modifying this new backbone. This work reveals that the versatile asymmetric backbone is an excellent moiety to construct light‐harvesting copolymers and to modulate the microstructure for highly efficient PSCs.  相似文献   

14.
The introduction of oligomeric polystyrene (PS) side chains into the conjugated backbone is proven to enhance the processability and electronic properties of semiconducting polymers. Here, two series of donor and acceptor polymers are prepared with different molar percentages of PS side chains to elucidate the effect of their substitution arrangement on the all‐polymer solar cell performance. The observed device performance is lower when the PS side chains are substituted on the donor polymer and higher when on the acceptor polymer, indicating a clear arrangement effect of the PS side chain. The incorporation of PS side chains to the acceptor polymer contributes to the decrease in phase separation domain size in the blend films. However, the reduced domain size was still an order of magnitude larger than the typical exciton diffusion length. A detailed morphological study together with the estimation of solubility parameter of the pristine PS, donor, and acceptor polymers reveals that the relative value of solubility parameter of each component dominantly contributes to the purity of the phase separated domain, which strongly impacts the amount of generated photocurrent and overall solar cell performance. This study provides an understanding of the design strategies to improve the all‐polymer solar cells.  相似文献   

15.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

16.
A series of low‐bandgap polymers based on thienyl benzodithiophene (BDTT) and furan‐substituted diketopyrrolopyrrole (FDPP) units with different side chains are presented. By replacing the branched ethylhexyl group on the FDPP unit with linear side chains, the structural order and carrier mobility of the modified polymers are enhanced accordingly. The power conversion efficiencies (PCE) of single‐junction devices based on polymers of this series are improved from ≈5% to ≈7%. More importantly, devices made from the modified polymers show excellent photovoltaic performance with a thick active layer of up to 360 nm, a very promising characteristic for the industrial implementation of polymer solar cell devices.  相似文献   

17.
Nowadays, solvent additives are widely used in organic solar cells (OSCs) to tune the nano‐morphology of the active blend film and enhance the device performance. With their help, power conversion efficiencies (PCEs) of OSCs have recently stepped over 10%. However, residual additive in the device can induce undesirable morphological change and also accelerate photo‐oxidation degradation of the active blend film. Thereby, their involvements are actually unfavorable for practical applications. Here, a donor material PThBDTP is employed, and PThBDTP:PC71BM based OSCs are fabricated. A PCE of over 10% is achieved without using any additives and film post‐treatments. The device displays a high open‐circuit voltage of 0.977 V, a large short‐circuit current density of 13.49 mA cm‐2, and a high fill factor of 76.3%. These results represent an important step towards developing high‐efficiency additive‐free OSCs.  相似文献   

18.
Understanding the correlation between polymer aggregation, miscibility, and device performance is important to establish a set of chemistry design rules for donor polymers with nonfullerene acceptors (NFAs). Employing a donor polymer with strong temperature‐dependent aggregation, namely PffBT4T‐2OD [poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3″′‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2″′‐quaterthiophen‐5,5‐diyl)], also known as PCE‐11 as a base polymer, five copolymer derivatives having a different thiophene linker composition are blended with the common NFA O‐IDTBR to investigate their photovoltaic performance. While the donor polymers have similar optoelectronic properties, it is found that the device power conversion efficiency changes drastically from 1.8% to 8.7% as a function of thiophene content in the donor polymer. Results of structural characterization show that polymer aggregation and miscibility with O‐IDTBR are a strong function of the chemical composition, leading to different donor–acceptor blend morphology. Polymers having a strong tendency to aggregate are found to undergo fast aggregation prior to liquid–liquid phase separation and have a higher miscibility with NFA. These properties result in smaller mixed donor–acceptor domains, stronger PL quenching, and more efficient exciton dissociation in the resulting cells. This work indicates the importance of both polymer aggregation and donor–acceptor interaction on the formation of bulk heterojunctions in polymer:NFA blends.  相似文献   

19.
Diketopyrrolopyrrole (DPP)‐conjugated polymers are a versatile class of semiconductors for application in organic solar cells because of their tunable optoelectronic properties. A record power conversion efficiency (PCE) of 9.4% was recently achieved for DPP polymers, but further improvements are required to reach true efficiency limits. Using five DPP polymers with different chemical structures and molecular weights, the device performance of polymer:fullerene solar cells is systematically optimized by considering device polarity, morphology, and light absorption. The polymer solubility is found to have a significant effect on the optimal device polarity. Soluble polymers show a 10–25% increase in PCE in inverted device configurations, while the device performance is independent of device polarity for less soluble DPP derivatives. The difference seems related to the polymer to fullerene weight ratio at the ZnO interface in inverted devices, which is higher for more soluble DPP polymers. Optimization of the nature of the cosolvent to narrow the fibril width of polymers in the blends toward the exciton diffusion length enhances charge generation. Additionally, the use of a retroreflective foil increases absorption of light. Combined, the effects afford a PCE of 9.6%, among the highest for DPP‐based polymer solar cells.  相似文献   

20.
It is a great challenge to simultaneously improve the two tangled parameters, open circuit voltage (Voc) and short circuit current density (Jsc) for organic solar cells (OSCs). Herein, such a challenge is addressed by a synergistic approach using fine‐tuning molecular backbone and morphology control simultaneously by a simple yet effective side chain modulation on the backbone of an acceptor–donor–acceptor (A–D–A)‐type acceptor. With this, two terthieno[3,2‐b]thiophene (3TT) based A–D–A‐type acceptors, 3TT‐OCIC with backbone modulation and 3TT‐CIC without such modification, are designed and synthesized. Compared with the controlled molecule 3TT‐CIC, 3TT‐OCIC shows power conversion efficiency (PCE) of 13.13% with improved Voc of 0.69 V and Jsc of 27.58 mA cm?2, corresponding to PCE of 12.15% with Voc of 0.65 V and Jsc of 27.04 mA cm?2 for 3TT‐CIC–based device. Furthermore, with effective near infrared absorption, 3TT‐OCIC is used as the rear subcell acceptor in a tandem device and gave an excellent PCE of 15.72%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号